Skip to main content

Lossless FFTs Using Posit Arithmetic

  • Conference paper
  • First Online:
Next Generation Arithmetic (CoNGA 2023)

Abstract

The Fast Fourier Transform (FFT) is required for chemistry, weather, defense, and signal processing for seismic exploration and radio astronomy. It is communication-bound, making supercomputers thousands of times slower at FFTs then at dense linear algebra. The key to accelerating FFTs is to minimize bits per datum without sacrificing accuracy. The 16-bit fixed point and IEEE float type lack sufficient accuracy for 1024- and 4096-point FFTs of data from analog-to-digital converters. We show that the 16-bit posit, with higher accuracy and larger dynamic range, can perform FFTs so accurately that a forward-inverse FFT restores the original signal perfectly. “Reversible” FFTs with posits are lossless, eliminating the need for 32-bit or higher precision. Similarly, 32-bit posit FFTs can replace 64-bit float FFTs for many HPC tasks. Speed, energy efficiency, and storage costs can thus be improved by 2\(\times \) for a broad range of HPC workloads.

Supported by organization A*STAR and NSCC Singapore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouziane, R., et al.: Optimizing FFT precision in optical OFDM transceivers. IEEE Photonics Technol. Lett. 23(20), 1550–1552 (2011). https://doi.org/10.1109/LPT.2011.2164059

    Article  Google Scholar 

  2. Buddhiram, C.R., et al.: Parameterized posit arithmetic generator (2018). Submitted to ICCD 2018

    Google Scholar 

  3. Chang, W.H., Nguyen, T.Q.: On the fixed-point accuracy analysis of FFT algorithms. IEEE Trans. Signal Process. 56(10), 4673–4682 (2008). https://doi.org/10.1109/TSP.2008.924637

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, W.H., Nguyen, T.Q.: On the fixed-point accuracy analysis of FFT algorithms. IEEE Trans. Signal Process. 56(10), 4673–4682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Al-Ars, Z., Hofstee, H.P.: A matrix-multiply unit for posits in reconfigurable logic using (Open) CAPI. ACM (2018)

    Google Scholar 

  6. Chung, S.Y.: Provably correct posit arithmetic with fixed-point big integer. ACM (2018)

    Google Scholar 

  7. Cochran, W.T., et al.: What is the fast Fourier transform? Proc. IEEE 55(10), 1664–1674 (1967). https://doi.org/10.1109/PROC.1967.5957

    Article  Google Scholar 

  8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duhamel, P., Hollmann, H.: ‘Split radix’ FFT algorithm. Electron. Lett. 20(1), 14–16 (1984). https://doi.org/10.1049/el:19840012

    Article  Google Scholar 

  10. Goldberg, D.: What every computer scientist should know about floating-point arithmetic

    Google Scholar 

  11. Good, I.: The interaction algorithm and practical Fourier analysis. J. Roy. Stat. Soc. Ser. B (Methodol.) 361–372 (1958)

    Google Scholar 

  12. Good, I.: The interaction algorithm and practical Fourier analysis: an addendum. J. Roy. Stat. Soc. Ser. B (Methodol.) 372–375 (1960)

    Google Scholar 

  13. Gustafson, J.L.: The End of Error: Unum Computing. Chapman & Hall/CRC Computational Science, CRC Press (2015)

    Google Scholar 

  14. Gustafson, J.L.: Posit arithmetic (2017). Mathematica notebook

    Google Scholar 

  15. Gustafson, J.L., Yonemoto, I.: Beating floating point at its own game: posit arithmetic. Supercomput. Front. Innov. 4(2) (2017). https://doi.org/10.14529/jsfi170206

  16. Gustafson, J.L., Yonemoto, I.: Beyond floating point: next generation computer arithmetic (2017). https://www.youtube.com/watch?v=aP0Y1uAA-2Y

  17. Hauser, J.R.: Berkeley SoftFloat (2018). http://www.jhauser.us/arithmetic/SoftFloat.html

  18. Hutter, J., Iannuzzi, M., Schiffmann, F., VandeVondele, J.: CP2K: atomistic simulations of condensed matter systems. Wiley Interdisc. Rev.: Comput. Mol. Sci. 4(1), 15–25 (2014)

    Google Scholar 

  19. Kahan, W.: IEEE standard 754 for binary floating-point arithmetic. Lect. Notes Status EEE 754(94720–1776), 11 (1996)

    Google Scholar 

  20. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int. 149(2), 390–412 (2002). https://doi.org/10.1046/j.1365-246X.2002.01653.x

    Article  Google Scholar 

  21. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation–II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int. 150(1), 303–318 (2002)

    Google Scholar 

  22. Kulisch, U.W., Miranker, W.L.: The arithmetic of the digital computer: a new approach. SIAM Rev. 28(1), 1–40 (1986). https://doi.org/10.1137/1028001, http://dx.doi.org/10.1137/1028001

  23. Langroudi, S.H.F., Pandit, T.N., Kudithipudi, D.: Deep learning inference on embedded devices: fixed-point vs posit. In: Energy Efficiency Machine Learning and Cognitive Computing for Embedded Applications (EMC\(^{2}\)) (2018). https://sites.google.com/view/asplos-emc2/program

  24. Lehoczky, Z., Szabo, A., Farkas, B.: High-level.NET software implementations of unum type I and posit with simultaneous FPGA implementation using Hastlayer. ACM (2018)

    Google Scholar 

  25. Li, M., et al.: Evaluation of variable precision computing with variable precision FFT implementation on FPGA. In: 2016 International Conference on Field-Programmable Technology (FPT), pp. 299–300 (2016). https://doi.org/10.1109/FPT.2016.7929560

  26. Lindstrom, P., Lloyd, S., Hittinger, J.: Universal coding of the reals: alternatives to IEEE floating point. In: Conference for Next Generation Arithmetic. ACM (2018)

    Google Scholar 

  27. Mallasén, D., Murillo, R., Barrio, A.A.D., Botella, G., Piñuel, L., Prieto-Matias, M.: Percival: open-source posit RISC-V core with quire capability. IEEE Trans. Emerg. Top. Comput. 10(3), 1241–1252 (2022). https://doi.org/10.1109/TETC.2022.3187199

    Article  Google Scholar 

  28. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, Second Edition. Prentice-Hall (1998)

    Google Scholar 

  29. Podobas, A.: Accelerating POSIT-based computations using FPGAs and OpenCL (2018). https://posithub.org/conga/2018/techprogramme#invitedtalk2

  30. Rader, C., Brenner, N.: A new principle for fast Fourier transformation. IEEE Trans. Acoust. Speech Signal Process. 24(3), 264–266 (1976). https://doi.org/10.1109/TASSP.1976.1162805

    Article  Google Scholar 

  31. Skamarock, W.C., Klemp, J.B., Dudhia, J.: Prototypes for the WRF (weather research and forecasting) model. In: Preprints, Ninth Conf. Mesoscale Processes, J11–J15, American Meteorological Society, Fort Lauderdale, FL (2001)

    Google Scholar 

  32. Soni, M., Kunthe, P.: A General comparison of FFT algorithms (2011). http://pioneerjournal.in/conferences/tech-knowledge/9th-national-conference/3471-a-general-comparison-of-fft-algorithms.html

  33. Thomas, L.: Using a computer to solve problems in physics. Appl. Digit. Comput. 458, 44–45 (1963)

    Google Scholar 

  34. Weinstein, C.J.: Quantization effects in digital filters. Technical report, MIT Lexington Lincoln Lab (1969)

    Google Scholar 

  35. Winograd, S.: On computing the discrete Fourier transform. Math. Comput. 32(141), 175–199 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winograd, S.: On the multiplicative complexity of the discrete Fourier transform. Adv. Math. 32(2), 83–117 (1979). https://doi.org/10.1016/0001-8708(79)90037-9, http://www.sciencedirect.com/science/article/pii/0001870879900379

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siew Hoon Leong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leong, S.H., Gustafson, J.L. (2023). Lossless FFTs Using Posit Arithmetic. In: Gustafson, J., Leong, S.H., Michalewicz, M. (eds) Next Generation Arithmetic. CoNGA 2023. Lecture Notes in Computer Science, vol 13851. Springer, Cham. https://doi.org/10.1007/978-3-031-32180-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32180-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32179-5

  • Online ISBN: 978-3-031-32180-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics