Skip to main content

Spectral Analysis of Equations over Quaternions

  • Conference paper
  • First Online:
Non-commutative and Non-associative Algebra and Analysis Structures (SPAS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 426))

  • 185 Accesses

Abstract

In this paper, we study how to solve certain equations on the set \(\mathscr {H}\) of all quaternions. By using spectral analytic representations on \(\mathscr {H}\), monomial equations, some quadratic equations, and linear equations on \(\mathscr {H}\) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpay, D., Colombo, F., Fabrizo, K., Kimsey, D.P., Sabadini, I.: Wiener algebra for the quaternions. Mediterr. J. Math. 13(5), 2463–2482 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpay, D., Colombo, F., Sabadini, I.: On a class of quaternionic positive definition functions and their derivatives. J. Math. Phy. 58(3), 033501, 15 (2017)

    Google Scholar 

  3. Barbaresco, F.: Lie Group Machine Learning and Gibbs Density on Poincare Unit Disk From Souriau Lie Groups Thermodynamics and \(SU(1,1)\) Coadjoint Orbits, Geometric Science of Information. Lecture Notes in Computer Science, vol. 11712, pp. 157–170. Springer, Cham (2019)

    Google Scholar 

  4. Beltictua, D., Zergane, A.: Coadjoint Orbits in Representation Theory of Pro-Lie Groups, Geometric Methods in Physics (XXXVI), pp. 281–287. Trends Math, Birkhaus/Springer, Cham (2019)

    MATH  Google Scholar 

  5. Cetto, A.M., Valdes-Hernandez, A., de la Pena, L.: On the spin projection operator and the probabilistic meaning of the bipartite correlation function. Found. Phy. 50(1), 27–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, I., Jorgensen, P.E.T.: Multi-variable quaternionic spectral analysis. Opuscula Math. 41(3), 335–379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doran, C.J.L.: Geometric Algebra for Physicists. Cambridge University Press (2003)

    Google Scholar 

  8. Farid, F.O., Wang, Q., Zhang, F.: On the eigenvalues of quaternion matrices. Linear Multilinear Alg. 4, 451–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flaut, C.: Eigenvalues and eigenvectors for the quaternion matrices of degree two. An. St. Univ. Ovidius Constanta 10(2), 39–44 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Girard, P.R.: Einstein’s equations and Clifford algebra. Adv. Appl. Clifford Alg. 9(2), 225–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halmos, P.R.: Linear Algebra Problem Book. Mathematical Association of America (1995)

    Google Scholar 

  12. Halmos, P.R.: Hilbert Space Problem Book. Springer, New York (1982)

    Google Scholar 

  13. Hamilton, W.R.: Lectures on Quaternions. Cambridge University Press (1853)

    Google Scholar 

  14. Kantor, I. L., Solodnikov, A. S.: Hypercomplex Numbers, an Elementary Introduction to Algebras. Published by Springer, New York (1989)

    Google Scholar 

  15. Kravchenko, V.: Applied Quaternionic Analysis. Heldemann Verlag (2003)

    Google Scholar 

  16. Mackey, N.: Hamilton and Jacobi meet again: quaternions and the eigenvalue problem. SIAM J. Matrix Anal. Appl. 16(2), 421–435 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muraleetharan, B., Thirulogasanthar, K.: Weyl and Browder S-spectra in a right quaternionic Hilbert space. J. Geom. Phys. 135, 7–20 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qaisar, S., Zou, L.: Distribution for the standard eigenvalues of quaternion matrices. Internat. Math. Forum 7(17), 831–838 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Leo, S.D., Scolarici, G., Solombrino, L.: Quaternionic eigenvalue problem. J. Math. Phy. 43, 5815–5829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rozenfeld, B.A.: The History of non-Euclidean Geometry: Evolution of the Concept of a Geometric Spaces. Springer (1988)

    Google Scholar 

  21. Sudbery, A.: Quaternionic analysis. Math. Proc. Cambrid. Philosop. Soc. (1998). https://doi.org/10.1017/s0305004100053638

  22. Taosheng, L.: Eigenvalues and eigenvectors of quaternion matrices. J. Central China Normal Univ. 29(4), 407–411 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Vince, J.A.: Geometric Algebra for Computer Graphics. Springer (2008)

    Google Scholar 

  24. Voight, J.: Quaternion Algebra. Graduate Texts in Mathematics, vol. 288 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, I., Jorgensen, P.E.T. (2023). Spectral Analysis of Equations over Quaternions. In: Silvestrov, S., Malyarenko, A. (eds) Non-commutative and Non-associative Algebra and Analysis Structures. SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-031-32009-5_8

Download citation

Publish with us

Policies and ethics