Skip to main content

Structural Connectivity Changes After Fornix Transection in Macaques Using Probabilistic Diffusion Tractography

  • Conference paper
  • First Online:
GeNeDis 2022 (GeNeDis 2022)

Abstract

The fornix, the limbic system’s white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggleton JP, McMackin D, Carpenter K, Hornak J, Kapur N, Halpin S, Wiles CM, Kamel H, Brennan P, Carton S, Gaffan D (2000). Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain, 123:800–15.

    Article  PubMed  Google Scholar 

  2. Aggleton JP, Wright NF, Rosene DL, Saunders RC (2015). Complementary patterns of direct amygdala and hippocampal projections to the macaque prefrontal cortex. Cereb Cortex, 25:4351–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aggleton JP, Nelson AJD, O’Mara SM (2022). Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev, 140:104813.

    Article  PubMed  Google Scholar 

  4. Andersson JLR, Skare S, Ashburner J (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 20:870–88.

    Article  PubMed  Google Scholar 

  5. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med, 50(5):1077–88.

    Article  CAS  PubMed  Google Scholar 

  6. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1):144–55.

    Article  CAS  PubMed  Google Scholar 

  7. Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B, 57:289–300.

    Google Scholar 

  8. Bubb EJ, Kinnavane L, Aggleton JP (2017). Hippocampal–diencephalic–cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci Adv, 1, 2398212817723443.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Charles DP, Gaffan D, Buckley MJ (2004). Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci, 24:2037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deeb W, Salvato B, Almeida L, Foote KD, Amaral R, Germann J, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Lozano AM, Okun MS (2019). Fornix-Region Deep Brain Stimulation-Induced Memory Flashbacks in Alzheimer’s Disease. N Engl J Med, 381(8):783–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eichenbaum H (2017). Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci, (9):547–58.

    Article  Google Scholar 

  12. Gaffan D (1994). Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transection. J Cogn Neurosci, 6:305–20.

    Article  CAS  PubMed  Google Scholar 

  13. Gaffan D, Gaffan EA (1991). Amnesia in man following transection of the fornix. Brain, 114:2611–18.

    Article  PubMed  Google Scholar 

  14. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984). Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12: 719–43.

    Article  CAS  PubMed  Google Scholar 

  15. Janssen P, Verhoef BE, Premereur E (2018). Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex, 98:218–27.

    Article  PubMed  Google Scholar 

  16. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012). FSL. Neuroimage, 62(2):782–90.

    Article  PubMed  Google Scholar 

  17. Kobayashi Y, Amaral DG (2003). Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol, 466 (1):48–79.

    Article  PubMed  Google Scholar 

  18. Kwok SC, Mitchell AS, Buckley MJ (2015). Adaptability to changes in temporal structure is fornix-dependent. Learn Mem, 22:354–59.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li R, Zhang C, Rao Y, Yuan TF (2022). Deep brain stimulation of fornix for memory improvement in Alzheimer’s disease: A critical review. Ageing Res Rev, 79:101668.

    Article  CAS  PubMed  Google Scholar 

  20. Mason S, Premereur E, Pelekanos V, Emberton A, Honess P, Mitchell AS (2019). Effective chair training methods for neuroscience research involving rhesus macaques (Macaca mulatta). J Neurosci Methods, 317:82–93.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McNaughton N, Vann SD (2022). Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends Neurosci, 45(7):550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mielke MM, Okonkwo OC, Oishi K, Mori S, Tighe S, Miller MI, Ceritoglu C, Brown T, Albert M, Lyketsos CG (2012). Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers Dement, 8(2):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mitchell AS, Browning PG, Wilson CR, Baxter MG, Gaffan D (2008). Dissociable roles for cortical and subcortical structures in memory retrieval and acquisition. J Neurosci, 28(34):8387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray EA, Wise SP (2010). What, if anything, can monkeys tell us about human amnesia when they can’t say anything at all? Neuropsychologia, 48:2385–2405.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pelekanos V, Mur M, Storrs KR (2016). Extracting object identity: ventral or dorsal visual stream? J Neurosci, 36(24):6368–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pelekanos V, Premereur E, Mitchell D, Chakraborty S, Mason S, Lee A, Mitchell AS (2020). Cortico-cortical and thalamocortical changes in functional connectivity and white matter structural integrity after reward-guided learning of visuospatial discriminations in rhesus monkeys. J Neurosci, 40(41):7887–7901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pelekanos V, Mok R, Joly O, Ainsworth M, Kyriazis D, Kelly M, Bell A, Kriegeskorte N (2020). Rapid event related, BOLD fMRI, non-human primates (NHP): choose two out of three. Sci Rep, 4;10(1):7485.

    Google Scholar 

  28. Perry BAL, Lomi E, Mitchell AS (2021). Thalamocortical interactions in cognition and disease: The mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev, 130:162–177.

    Article  PubMed  Google Scholar 

  29. Poletti CE, Creswell G (1977). Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol, 175:101–28.

    Article  CAS  PubMed  Google Scholar 

  30. Poreh A, Winocur G, Moscovitch M, Backon M, Goshen E, Ram Z, Feldman Z (2006). Anterograde and retrograde amnesia in a person with bilateral fornix lesions following removal of a colloid cyst. Neuropsychologia, 44:2241–48.

    Article  PubMed  Google Scholar 

  31. Prasad JA, Chudasama Y (2013). Viral tracing identifies parallel disynaptic pathways to the hippocampus. J Neurosci, 33(19):8494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosene DL, Van Hoesen GW (1977). Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science, 198:315–17.

    Article  CAS  PubMed  Google Scholar 

  33. Saleem KS, Avram AV, Glen D, Yen CC-C, Ye FQ, Komlosh M, Basser PJ (2021). High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology. Neuroimage, 245:118759.

    Article  CAS  PubMed  Google Scholar 

  34. Saunders RC, Mishkin M, Aggleton JP (2005). Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res, 167:1–16.

    Article  PubMed  Google Scholar 

  35. Saunders RC, Aggleton JP (2007). Origin and topography of fibers contributing to the fornix in macaque monkeys. Hippocampus, 17(5):396–411.

    Article  PubMed  Google Scholar 

  36. Van Essen DC, Glasser MF, Dierker DL, Harwell J (2012). Cortical parcellations of the macaque monkey analyzed on surface-based atlases. Cereb Cortex, 22(10):2227–40.

    Article  PubMed  Google Scholar 

  37. Wilson CR, Charles DP, Buckley MJ, Gaffan D (2007). Fornix transection impairs learning of randomly changing object discriminations. J Neurosci, 27:12868–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Pelekanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pelekanos, V., Premereur, E., Mitchell, A.S. (2023). Structural Connectivity Changes After Fornix Transection in Macaques Using Probabilistic Diffusion Tractography. In: Vlamos, P. (eds) GeNeDis 2022. GeNeDis 2022. Advances in Experimental Medicine and Biology, vol 1423. Springer, Cham. https://doi.org/10.1007/978-3-031-31978-5_2

Download citation

Publish with us

Policies and ethics