Skip to main content

The Variational Approach to the Flow of Sobolev-Diffeomorphisms Model

  • Conference paper
  • First Online:
  • 938 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

The flow of diffeomorphisms, aka LDDMM, is a framework to define a group G of diffeomorphisms of chosen regularity with a Riemannian structure. If these diffeomorphisms are used to deform a template shape or image, they generate a space of shapes or images to which the Riemannian structure descends. For this reason LDDMM lies at the centre of computational anatomy, shape space theory, and image metamorphosis. Typically, to obtain a geodesic equation on G one formally applies the geodesic equation of Riemannian Lie groups, to which G has structural similarity. Then interpolation tasks between two given deformations, needed for all kinds of statistical analyses, are solved by shooting discretized geodesics within an optimal control approach. If G is chosen with Sobolev regularity, it is known to be a veritable infinite-dimensional Riemannian manifold. In this setting we derive the weak geodesic PDE, which in its strong form coincides with the formally derived one, and present a time discretization to compute a geodesic between given deformations by minimizing a time-discrete path energy, which Mosco-converges to the continuous path energy. This variational ansatz is a more natural alternative to shooting and to our knowledge the first numerical approach to LDDMM by minimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa

    Article  MATH  Google Scholar 

  2. Berkels, B., Effland, A., Rumpf, M.: Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 8(3), 1457–1488 (2015). https://doi.org/10.1137/140970719

    Article  MathSciNet  MATH  Google Scholar 

  3. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Google Scholar 

  4. Bruveris, M., Vialard, F.X.: On completeness of groups of diffeomorphisms. J. Eur. Math. Soc. (JEMS) 19(5), 1507–1544 (2017). https://doi.org/10.4171/JEMS/698

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, G., Miller, M., Rabbitt, R.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  6. Effland, A., Kobler, E., Pock, T., Rajković, M., Rumpf, M.: Image morphing in deep feature spaces: theory and applications. J. Math. Imaging Vis. 63, 309–327 (2021). https://doi.org/10.1007/s10851-020-00974-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Effland, A., Neumayer, S., Rumpf, M.: Convergence of the time discrete metamorphosis model on Hadamard manifolds. SIAM J. Imaging Sci. 13(2), 557–588 (2020). https://doi.org/10.1137/19M1247073

    Article  MathSciNet  MATH  Google Scholar 

  8. Inci, H., Kappeler, T., Topalov, P.: On the regularity of the composition of diffeomorphisms. Mem. Am. Math. Soc. 226(1062), vi+60 (2013). https://doi.org/10.1090/S0065-9266-2013-00676-4

  9. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4(1), 375–405 (2002)

    Article  Google Scholar 

  10. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24(2), 209–228 (2006). https://doi.org/10.1007/s10851-005-3624-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016). https://doi.org/10.1137/16M1064064

    Article  MathSciNet  MATH  Google Scholar 

  12. Rumpf, M., Wirth, B.: Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects. SIAM J. Imaging Sci. 6(4), 2581–2602 (2013). https://doi.org/10.1137/120870864

    Article  MathSciNet  MATH  Google Scholar 

  13. Trouvé, A.: An infinite dimensional group approach for physics based models in pattern recognition. Technical report, ENS Cachan (1995). http://128.220.140.31/publications/papers_in_database/alain/trouve1995.pdf

  14. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005). https://doi.org/10.1137/S0036141002404838

    Article  MathSciNet  MATH  Google Scholar 

  15. Trouvé, A., Younes, L.: Shape spaces. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, vol. 1, 2, 3, pp. 1759–1817. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-0790-8_55

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via project 211504053 – Collaborative Research Center 1060 and via project 431460824 – Collaborative Research Center 1450 and via Germany’s Excellence Strategy project 390685813 – Hausdorff Center for Mathematics and project 390685587 – Mathematics Münster: Dynamics-Geometry-Structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guastini, M., Rajković, M., Rumpf, M., Wirth, B. (2023). The Variational Approach to the Flow of Sobolev-Diffeomorphisms Model. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics