Skip to main content

Stochastic Gradient Descent for Linear Inverse Problems in Variable Exponent Lebesgue Spaces

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

We consider a stochastic gradient descent (SGD) algorithm for solving linear inverse problems (e.g., CT image reconstruction) in the Banach space framework of variable exponent Lebesgue spaces \(\ell ^{(p_n)}(\mathbb {R})\). Such non-standard spaces have been recently proved to be the appropriate functional framework to enforce pixel-adaptive regularisation in signal and image processing applications. Compared to its use in Hilbert settings, however, the application of SGD in the Banach setting of \(\ell ^{(p_n)}(\mathbb {R})\) is not straightforward, due, in particular to the lack of a closed-form expression and the non-separability property of the underlying norm. In this manuscript, we show that SGD iterations can effectively be performed using the associated modular function. Numerical validation on both simulated and real CT data show significant improvements in comparison to SGD solutions both in Hilbert and other Banach settings, in particular when non-Gaussian or mixed noise is observed in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For \(\mathbf {{SGD}_2}\) \(\mu _0\) is set as \(0.95/\max _{i}\Vert A_i\Vert ^2\) and \(\gamma =0.51\). For \(\mathbf {{SGD}_p}\) and \(\mathbf {{SGD}_{p_n,q_n}}\), we use \(\mu _0=0.015\) with \(\gamma =(p-1)/p+0.01\) and \(\gamma =(p_--1)/p_-+0.01\) respectively.

  2. 2.

    For \(\textbf{SGD}_2\), \(\mu _0=0.95/\max _{i}\Vert A_i\Vert ^2\), \(\gamma =0.51\). For \(\textbf{SGD}_{p_n,q_n}\) we \(\mu _0=0.001\), \(\gamma =0.58\).

References

  1. Alparone, M., Nunziata, F., Estatico, C., Lenti, F., Migliaccio, M.: An adaptive \(l^{p}\) -penalization method to enhance the spatial resolution of microwave radiometer measurements. IEEE Trans. Geosci. Remote Sens. 57(9), 6782–6791 (2019)

    Article  Google Scholar 

  2. Bonino, B., Estatico, C., Lazzaretti, M.: Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging. Numer. Algorithms 92(6) (2023)

    Google Scholar 

  3. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Springer, Dordrecht (1990). https://doi.org/10.1007/978-94-009-2121-4

    Book  MATH  Google Scholar 

  4. Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces. Springer Birkhäuser, Basel (2013). https://doi.org/10.1007/978-3-0348-0548-3

  5. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18363-8

    Book  MATH  Google Scholar 

  6. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in hilbert space. Numer. Funct. Anal. Optim. 13(5–6), 413–429 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engl, H.W., Hanke, A., Neubauer, M.: Regularization of Inverse Problems. Mathematics and Its Applications, Springer, Dordrecht (2000)

    MATH  Google Scholar 

  8. Guan, W.-B., Song, W.: The generalized forward-backward splitting method for the minimization of the sum of two functions in banach spaces. Numer. Funct. Anal. Optim. 36(7), 867–886 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient (positron emission tomography application). IEEE Trans. Med. Imaging 12(3), 600–609 (1993)

    Article  Google Scholar 

  10. Jin, Q., Lu, X., Zhang, L.: Stochastic mirror descent method for linear ill-posed problems in Banach spaces (2022). arXiv preprint https://arxiv.org/abs/2207.06584

  11. Jin, Q., Stals, L.: Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Inverse Probl. 28(10), 104011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jørgensen, J.S., et al.: Core imaging library - Part I: a versatile python framework for tomographic imaging. Phil. Trans. R. Soc. A 379(2204), 20200192 (2021)

    Article  Google Scholar 

  13. Kereta, Z., Jin, B.: On the convergence of stochastic gradient descent for linear inverse problems in Banach spaces. SIAM J. Imaging Sci. (2023, in press). arXiv preprint https://arxiv.org/abs/2302.05197

  14. Lazzaretti, M., Calatroni, L., Estatico, C.: Modular-proximal gradient algorithms in variable exponent Lebesgue spaces. SIAM J. Sci. Comput. 44(6), A3463–A3489 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meaney, A.: X-ray dataset of walnut (2020-11-11), November 2020

    Google Scholar 

  16. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Hoboken (1986)

    Book  MATH  Google Scholar 

  17. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322–343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Neubauer, A.: Tikhonov-regularization of ill-posed linear operator equations on closed convex sets. J. Approx. Theory 53(3), 304–320 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13(2), 441–463 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces. De Gruyter (2012)

    Google Scholar 

  22. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1), 311–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Twyman, R., Arridge, S., et al.: An investigation of stochastic variance reduction algorithms for relative difference penalized 3D PET image reconstruction. IEEE Trans. Med. Imaging 42(1), 29–41 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

CE and ML acknowledge the support of the Italian INdAM group on scientific calculus GNCS. LC acknowledges the support received by the ANR projects TASKABILE (ANR-22-CE48-0010) and MICROBLIND (ANR-21-CE48-0008), the H2020 RISE projects NoMADS (GA. 777826) and the GdR ISIS project SPLIN. ZK acknowledges support from EPSRC grants EP/T000864/1 and EP/X010740/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Calatroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazzaretti, M., Kereta, Z., Estatico, C., Calatroni, L. (2023). Stochastic Gradient Descent for Linear Inverse Problems in Variable Exponent Lebesgue Spaces. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics