Skip to main content

On the Inclusion of Topological Requirements in CNNs for Semantic Segmentation Applied to Radiotherapy

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

The incorporation of prior knowledge into a medical segmentation task allows to compensate for the issue of weak boundary definition and to be more in line with anatomical reality even though the data do not explicitly show these characteristics. This motivation underlies the proposed contribution which aims to provide a unified variational framework involving topological requirements in the training of convolutional neural networks through the design of a suitable penalty in the loss function. More precisely, these topological constraints are implicitly enforced by viewing the segmentation assignment as a registration task between the considered image and its associated ground truth under incompressibility condition, making them homeomorphic. The application falls within the scope of organ-at-risk segmentation in CT (Computed Tomography) images, in the context of radiotherapy planning.

This project was co-financed by the European Union with the European regional development fund (ERDF, 18P03390/18E01750/18P02733), by the Haute-Normandie Régional Council via the M2SINUM project and by the French Research National Agency ANR via AAP CE23 MEDISEG ANR project. The authors would like to thank the CRIANN (Centre Régional Informatique et d’Applications Numériques de Normandie, France) for providing computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. P. Roy. Soc. Edin. A 88(3–4), 315–328 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.: Three-Dimensional Elasticity. Elsevier Science, Mathematical Elasticity (1994)

    Google Scholar 

  3. Clough, J., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.: Topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. (2020). IEEE

    Google Scholar 

  4. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society (2010)

    Google Scholar 

  5. El Jurdi, R., Petitjean, C., Honeine, P., Cheplygina, V., Abdallah, F.: High-level prior-based loss functions for medical image segmentation: A survey. Comput. Vis. Image Underst. 210, 103248 (2021)

    Article  Google Scholar 

  6. Estienne, T., et al.: U-ReSNet: ultimate coupling of registration and segmentation with deep nets. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 310–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_35

    Chapter  Google Scholar 

  7. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20(1), 70–80 (2001)

    Article  Google Scholar 

  8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  9. Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. I. Two-dimensional and axisymmetric problems. SIAM J. Appl. Math. 42(2), 400–429 (1982)

    Google Scholar 

  10. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  11. Lambert, Z., Petitjean, C., Dubray, B., Ruan, S.: SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. In: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2020)

    Google Scholar 

  12. Li, B., et al.: A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 645–653. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_72

    Chapter  Google Scholar 

  13. Liu, J., Wang, X., Tai, X.C.: Deep Convolutional Neural Networks with Spatial Regularization, Volume and Star-shape Priori for Image Segmentation. J. Math. Imaging Vis. 64(6), 625–645 (2022)

    Article  MATH  Google Scholar 

  14. Negrón Marrero, P.: A numerical method for detecting singular minimizers of multidimensional problems in nonlinear elasticity. Numer. Math. 58, 135–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ségonne, F., Pacheco, J., Fischl, B.: Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating loops. IEEE Trans. Med. Imaging 26(4), 518–529 (2007)

    Article  Google Scholar 

  16. Shit, S.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  17. Wirth, B.: On the Gamma-limit of joint image segmentation and registration functionals based on phase fields. Interfaces Free Bound. 18(4), 441–477 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Le Guyader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lambert, Z., Le Guyader, C., Petitjean, C. (2023). On the Inclusion of Topological Requirements in CNNs for Semantic Segmentation Applied to Radiotherapy. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics