Skip to main content

Deep Image Prior Regularized by Coupled Total Variation for Image Colorization

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 883 Accesses

Abstract

Automatic image colorization is an old problem in image processing that has regained interest in the recent years with the emergence of deep-learning approaches with dramatic results. A careful examination shows that these methods often suffer from the so-called “color halos” or “color bleeding” effect: some colors are not well localized and may cross shape edges. This phenomenon is caused by the non-alignment of edges in the luminance and chrominance maps. We address this problem by regularizing the output of an efficient image colorization method with deep image prior and coupled total variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antic, J., Howard, J., Manor, U.: DeCrappification, DeOldification, and super resolution. Fast.ai course (2019). https://www.fast.ai/posts/2019-05-03-decrappify.html

  2. Arbelot, B., Vergne, R., Hurtut, T., Thollot, J.: Local texture-based color transfer and colorization. Comput. Graph. 62, 15–27 (2017)

    Article  Google Scholar 

  3. Batard, T., Haro, G., Ballester, C.: DIP-VBTV: a color image restoration model combining a deep image prior and a vector bundle total variation. SIAM J. Imag. Sci. 14(4), 1816–1847 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deshpande, A., Lu, J., Yeh, M.C., Chong, M., Forsyth, D.: Learning diverse image colorization. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2877–2885 (2017)

    Google Scholar 

  5. Deshpande, A., Rock, J., Forsyth, D.: Learning large-scale automatic image colorization. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 567–575 (2015)

    Google Scholar 

  6. Huang, Z., Zhao, N., Liao, J.: Unicolor: a unified framework for multi-modal colorization with transformer. ACM Trans. Graph. (Proc. SIGGRAPH2022) 41(6) (2022)

    Google Scholar 

  7. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. (Proc. SIGGRAPH’16) 35(4), 1–11 (2016)

    Google Scholar 

  8. Kim, E., Lee, S., Park, J., Choi, S., Seo, C., Choo, J.: Deep edge-aware interactive colorization against color-bleeding effects. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 14667–14676 (2021)

    Google Scholar 

  9. Kim, G., et al.: Bigcolor: colorization using a generative color prior for natural images. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision— ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13667, pp. 350–366. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_21

  10. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  11. Liu, J., Sun, Y., Xu, X., Kamilov, U.: Image restoration using total variation regularized deep image prior. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7715–7719 (2019)

    Google Scholar 

  12. Mouzon, T., Pierre, F., Berger, M.-O.: Joint CNN and variational model for fully-automatic image colorization. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 535–546. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_42

    Chapter  Google Scholar 

  13. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7474–7489 (2022)

    Article  Google Scholar 

  14. Pierre, F., Aujol, J.F.: Recent approaches for image colorization. In: Chen, K., Schönlieb, C.B., Tai, X.C., Younces, L. (eds.) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision. Springer (2021). https://doi.org/10.1007/978-3-030-03009-4_55-1

  15. Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-chrominance model for image colorization. SIAM J. Imag. Sci. 8(1), 536–563 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salmona, A., Bouza, L., Delon, J.: DeOldify: a review and implementation of an automatic colorization method. Image Process. Line 12, 347–368 (2022)

    Article  MathSciNet  Google Scholar 

  17. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  18. Vitoria, P., Raad, L., Ballester, C.: ChromaGAN: adversarial picture colorization with semantic class distribution. In: Proceedings of the Winter Conference on Applications of Computer Vision, pp. 2445–2454 (2020)

    Google Scholar 

  19. Xia, M., Hu, W., Wong, T.T., Wang, J.: Disentangled image colorization via global anchors. ACM Trans. Graph. (Proc. SIGGRAPH2022) 41(6) (2022)

    Google Scholar 

  20. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. (Proc. SIGGRAPH2017) 36(4) (2017)

    Google Scholar 

  21. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was funded, in whole or in part, by l’Agence Nationale de la Recherche (ANR), project ANR-21-0008-01. For the purpose of open access, the authors have applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agazzotti, G., Pierre, F., Sur, F. (2023). Deep Image Prior Regularized by Coupled Total Variation for Image Colorization. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics