Abstract
The task of succinctly and insightfully discussing themes in the differences between several (three or more) groups in naturalistic, ethnographic research faces a number of constraints. The number of all possible pairs is a quadratic function of the number of groups, and prior order and stand-out subsets may not exist to narrow that number down. We define and compare methods for guiding this task during Epistemic Network Analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shah, M., Foster, A., Talafian, H., Barany, A.: Examining the impact of virtual city planning on high school students’ identity exploration. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) Advances in Quantitative Ethnography. ICQE 2019. CCIS, vol. 1112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_17
Espino, D.P., et al.: Reflections of health care workers on their in-hospital experiences during the onset of COVID-19. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_17
Bressler, D.M.: Understanding off-topic utterances: do off-topic comments serve a purpose in collaborative learning? In First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)
Ha, S.Y., Lin, T.-J.L.: Development of epistemic cognition aboutsocial knowledge through collaborative small-group discussions. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)
Brohinsky, J., Marquart, C., Wang, J., Ruis, A.R., Shaffer, D.W.: Trajectories in epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) ICQE 2021. CCIS, vol. 1312, pp. 106–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_8
Wakimoto, T., et al.: Student teachers’ discourse during puppetry-based microteaching. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) Advances in Quantitative Ethnography. ICQE 2019. CCIS, vol. 1112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_20
Wright, T., Oliveira, L., Espino, D.P., Lee, S.B., Hamilton, E.: Getting there together: examining patterns of a long-term collaboration in a virtual STEM makerspace. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_22
Barany, A., Philips, M., Kawakubo, A.J.T., Oshima, J.: Choosing units of analysis in temporal discourse. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_6
Mochizuki, T., et al.: Effects of perspective-taking through tangible puppetry in microteaching and reflection on the role-play with 3d animation. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) ICQE 2019. CCIS, vol. 1112, pp. 315–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_28
Espino, D.P., et al.: News media communication of risk and mitigation factors during early stages of the covid-19 pandemic. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement, p. 23 (2021)
Carmona, G., Galarza-Tohen, B., Martinez-Medina, G.: Exploring interactions between computational and critical thinking in model-eliciting activities through epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_23
Knowles, M.A.: Telling stories of transitions: a demonstration of nonlinear epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_8
Mohammadhassan, N., Mitrovic, A.: Discovering differences in learning behaviours during active video watching using epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_24
Benna, A.M., Reynolds, K.: Teachers’ beliefs shift across year-long professional development: ENA graphs transformation of privately held beliefs over time. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_13
Bressler, D.M.: Differences in group communication between game and nongame collaborations. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)
Barany, A., Shah, M., Foster, A.: Connecting curricular design and student identity change: an epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_11
Phillips, M., Siebert-Evenstone, A., Kessler, A., Gasevic, D., Shaffer, D.W.: Professional decision making: reframing teachers’ work using epistemic frame theory. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_18
Ma, L.: Using epistemic network analysis to explore emergent discourse dynamics of a grade 2 knowledge building community. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)
Vachuska, K.: Using epistemic network analysis to measure and identify racialidentity development stages. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)
Schnaider, K., Schiavetto, S., Meier, F., Wasson, B., Allsopp, B.B., Spikol, D.: Governmental response to the COVID-19 pandemic - a quantitative ethnographic comparison of public health authorities’ communication in Denmark, Norway, and Sweden. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_28
Scianna, J., Kaliisa, R., Boisvenue, J.J., Zörgő, S.: Approaching structured debate with quantitative ethnography in mind. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_3
Hamilton, E.R., Lee, S.B., Charles, R., Molloy, J.: Peering a generation into the future: assessing workforce outcomes in the 2020s from an intervention in the 1990s. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_11
Bowman, D., et al.: The mathematical foundations of epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_7
Van Loan, C.F., Golub, G.: Matrix computations (johns hopkins studies inmathematical sciences). Matrix Computations (1996)
Chu, D., Goh, S.R.: A new and fast orthogonal linear discriminant analysis on undersampled problems. SIAM J. Sci. Comput. 32(4), 2274–2297 (2010)
Dai, D.-Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recogn. 36(3), 845–847 (2003)
Friedman, J.H.: Regularized discriminant analysis. J. Am. Statist. Assoc. 84(405), 165–175 (1989)
Chen, L.-F., Mark Liao, H.-Y., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new lda-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)
Howland, P., Jeon, M., Park, H.: Structure preserving dimensionreduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25(1), 165–179 (2003)
Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995–1006 (2004)
Huang, R., Liu, Q., Lu, H., Ma, S.: Solving the small samplesize problem of lda. In 2002 International Conference on Pattern Recognition, vol. 3, pp. 29–32. IEEE (2002)
Park, H., Drake, B.L., Lee, S., Park, C.H.: Fast linear discriminant analysis using QR decomposition and regularization. Technical report, Georgia Institute of Technology (2007)
Ye, J., Yu, B.: Characterization of a family of algorithms for generalized discriminant analysis on under sampled problems. J. Mach. Learn. Res. 6(4) (2005)
Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)
Ye, J., Xiong, T., Madigan, D.: Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. J. Mach. Learn. Res. 7(7) (2006)
Knowles, M., Shaffer, D.W.: Hierarchical epistemic network analysis. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement. ICQE (2021)
Shaffer, D.W.: Quantitative ethnography. Lulu. com (2017)
Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3):9–45 (2016)
Marquart, C.L., Hinojosa, C., Swiecki, Z., Eagan, B., Shaffer, D.W.: Epistemic networkanalysis (version 1.5. 2)[software] (2018)
Shaffer, D., Ruis, A.: Epistemic network analysis: a worked example of theory based learning analytics. Handbook of learning analytics (2017)
Arastoopour, G., et al.: Measuring first-year students’ ways of professional thinking in a virtual internship. In: 2012 ASEE Annual Conference & Exposition, pp. 25–971 (2012)
Rogy, K.M., Bodnar, C.A., Clark, R.M.: Examining the entrepreneurial mindset of senior chemical engineering students as a result of exposure to the epistemic game “nephrotex”. In: 2014 ASEE Annual Conference & Exposition, pp. 24–559 (2014)
Ruis, A.R., Siebert-Evenstone, A.L., Pozen, R., Eagan, B., Shaffer, D.W.: A method for determining the extent of recent temporal context in analyses of complex, collaborative thinking. In: 13th International Conference of the Learning Sciences (ICLS) 2018, vol. 3 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Knowles, M.A., Barany, A., Cai, Z., Shaffer, D.W. (2023). Multiclass Rotations in Epistemic Network Analysis. In: Damşa, C., Barany, A. (eds) Advances in Quantitative Ethnography. ICQE 2022. Communications in Computer and Information Science, vol 1785. Springer, Cham. https://doi.org/10.1007/978-3-031-31726-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-31726-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31725-5
Online ISBN: 978-3-031-31726-2
eBook Packages: Computer ScienceComputer Science (R0)