Skip to main content

Multiclass Rotations in Epistemic Network Analysis

  • Conference paper
  • First Online:
Advances in Quantitative Ethnography (ICQE 2022)

Abstract

The task of succinctly and insightfully discussing themes in the differences between several (three or more) groups in naturalistic, ethnographic research faces a number of constraints. The number of all possible pairs is a quadratic function of the number of groups, and prior order and stand-out subsets may not exist to narrow that number down. We define and compare methods for guiding this task during Epistemic Network Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shah, M., Foster, A., Talafian, H., Barany, A.: Examining the impact of virtual city planning on high school students’ identity exploration. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) Advances in Quantitative Ethnography. ICQE 2019. CCIS, vol. 1112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_17

  2. Espino, D.P., et al.: Reflections of health care workers on their in-hospital experiences during the onset of COVID-19. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_17

  3. Bressler, D.M.: Understanding off-topic utterances: do off-topic comments serve a purpose in collaborative learning? In First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)

    Google Scholar 

  4. Ha, S.Y., Lin, T.-J.L.: Development of epistemic cognition aboutsocial knowledge through collaborative small-group discussions. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)

    Google Scholar 

  5. Brohinsky, J., Marquart, C., Wang, J., Ruis, A.R., Shaffer, D.W.: Trajectories in epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) ICQE 2021. CCIS, vol. 1312, pp. 106–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_8

    Chapter  Google Scholar 

  6. Wakimoto, T., et al.: Student teachers’ discourse during puppetry-based microteaching. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) Advances in Quantitative Ethnography. ICQE 2019. CCIS, vol. 1112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_20

  7. Wright, T., Oliveira, L., Espino, D.P., Lee, S.B., Hamilton, E.: Getting there together: examining patterns of a long-term collaboration in a virtual STEM makerspace. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_22

  8. Barany, A., Philips, M., Kawakubo, A.J.T., Oshima, J.: Choosing units of analysis in temporal discourse. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_6

  9. Mochizuki, T., et al.: Effects of perspective-taking through tangible puppetry in microteaching and reflection on the role-play with 3d animation. In: Eagan, B., Misfeldt, M., Siebert-Evenstone, A. (eds.) ICQE 2019. CCIS, vol. 1112, pp. 315–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33232-7_28

  10. Espino, D.P., et al.: News media communication of risk and mitigation factors during early stages of the covid-19 pandemic. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement, p. 23 (2021)

    Google Scholar 

  11. Carmona, G., Galarza-Tohen, B., Martinez-Medina, G.: Exploring interactions between computational and critical thinking in model-eliciting activities through epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_23

  12. Knowles, M.A.: Telling stories of transitions: a demonstration of nonlinear epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_8

  13. Mohammadhassan, N., Mitrovic, A.: Discovering differences in learning behaviours during active video watching using epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_24

  14. Benna, A.M., Reynolds, K.: Teachers’ beliefs shift across year-long professional development: ENA graphs transformation of privately held beliefs over time. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_13

  15. Bressler, D.M.: Differences in group communication between game and nongame collaborations. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)

    Google Scholar 

  16. Barany, A., Shah, M., Foster, A.: Connecting curricular design and student identity change: an epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_11

  17. Phillips, M., Siebert-Evenstone, A., Kessler, A., Gasevic, D., Shaffer, D.W.: Professional decision making: reframing teachers’ work using epistemic frame theory. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_18

  18. Ma, L.: Using epistemic network analysis to explore emergent discourse dynamics of a grade 2 knowledge building community. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)

    Google Scholar 

  19. Vachuska, K.: Using epistemic network analysis to measure and identify racialidentity development stages. In: First International Conference on Quantitative Ethnography: Conference Proceedings Supplement (2019)

    Google Scholar 

  20. Schnaider, K., Schiavetto, S., Meier, F., Wasson, B., Allsopp, B.B., Spikol, D.: Governmental response to the COVID-19 pandemic - a quantitative ethnographic comparison of public health authorities’ communication in Denmark, Norway, and Sweden. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_28

  21. Scianna, J., Kaliisa, R., Boisvenue, J.J., Zörgő, S.: Approaching structured debate with quantitative ethnography in mind. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_3

  22. Hamilton, E.R., Lee, S.B., Charles, R., Molloy, J.: Peering a generation into the future: assessing workforce outcomes in the 2020s from an intervention in the 1990s. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1522. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93859-8_11

  23. Bowman, D., et al.: The mathematical foundations of epistemic network analysis. In: Ruis, A.R., Lee, S.B. (eds.) Advances in Quantitative Ethnography. ICQE 2021. CCIS, vol. 1312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_7

  24. Van Loan, C.F., Golub, G.: Matrix computations (johns hopkins studies inmathematical sciences). Matrix Computations (1996)

    Google Scholar 

  25. Chu, D., Goh, S.R.: A new and fast orthogonal linear discriminant analysis on undersampled problems. SIAM J. Sci. Comput. 32(4), 2274–2297 (2010)

    Google Scholar 

  26. Dai, D.-Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recogn. 36(3), 845–847 (2003)

    Google Scholar 

  27. Friedman, J.H.: Regularized discriminant analysis. J. Am. Statist. Assoc. 84(405), 165–175 (1989)

    Google Scholar 

  28. Chen, L.-F., Mark Liao, H.-Y., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new lda-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)

    Google Scholar 

  29. Howland, P., Jeon, M., Park, H.: Structure preserving dimensionreduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25(1), 165–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995–1006 (2004)

    Article  Google Scholar 

  31. Huang, R., Liu, Q., Lu, H., Ma, S.: Solving the small samplesize problem of lda. In 2002 International Conference on Pattern Recognition, vol. 3, pp. 29–32. IEEE (2002)

    Google Scholar 

  32. Park, H., Drake, B.L., Lee, S., Park, C.H.: Fast linear discriminant analysis using QR decomposition and regularization. Technical report, Georgia Institute of Technology (2007)

    Google Scholar 

  33. Ye, J., Yu, B.: Characterization of a family of algorithms for generalized discriminant analysis on under sampled problems. J. Mach. Learn. Res. 6(4) (2005)

    Google Scholar 

  34. Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)

    Google Scholar 

  35. Ye, J., Xiong, T., Madigan, D.: Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. J. Mach. Learn. Res. 7(7) (2006)

    Google Scholar 

  36. Knowles, M., Shaffer, D.W.: Hierarchical epistemic network analysis. In: Second International Conference on Quantitative Ethnography: Conference Proceedings Supplement. ICQE (2021)

    Google Scholar 

  37. Shaffer, D.W.: Quantitative ethnography. Lulu. com (2017)

    Google Scholar 

  38. Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3):9–45 (2016)

    Google Scholar 

  39. Marquart, C.L., Hinojosa, C., Swiecki, Z., Eagan, B., Shaffer, D.W.: Epistemic networkanalysis (version 1.5. 2)[software] (2018)

    Google Scholar 

  40. Shaffer, D., Ruis, A.: Epistemic network analysis: a worked example of theory based learning analytics. Handbook of learning analytics (2017)

    Google Scholar 

  41. Arastoopour, G., et al.: Measuring first-year students’ ways of professional thinking in a virtual internship. In: 2012 ASEE Annual Conference & Exposition, pp. 25–971 (2012)

    Google Scholar 

  42. Rogy, K.M., Bodnar, C.A., Clark, R.M.: Examining the entrepreneurial mindset of senior chemical engineering students as a result of exposure to the epistemic game “nephrotex”. In: 2014 ASEE Annual Conference & Exposition, pp. 24–559 (2014)

    Google Scholar 

  43. Ruis, A.R., Siebert-Evenstone, A.L., Pozen, R., Eagan, B., Shaffer, D.W.: A method for determining the extent of recent temporal context in analyses of complex, collaborative thinking. In: 13th International Conference of the Learning Sciences (ICLS) 2018, vol. 3 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariah A. Knowles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knowles, M.A., Barany, A., Cai, Z., Shaffer, D.W. (2023). Multiclass Rotations in Epistemic Network Analysis. In: Damşa, C., Barany, A. (eds) Advances in Quantitative Ethnography. ICQE 2022. Communications in Computer and Information Science, vol 1785. Springer, Cham. https://doi.org/10.1007/978-3-031-31726-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31726-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31725-5

  • Online ISBN: 978-3-031-31726-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics