Skip to main content

Peritoneal Implants and Drug Delivery

  • Chapter
  • First Online:
Exploring Drug Delivery to the Peritoneum

Abstract

Peritoneal cavity owing to its physiological and anatomical features offers perfused capillaries to facilitate permeation for systemic delivery, dosage form retention, and an ideal site for delivering depot of therapeutic substance to the visceral organs. Pathologies of tumor or infectious origin are more to be treated through the peritoneal route since oral administration requires heavy dose to achieve local drug concentration. Hydrogels, nanocarriers, peritoneal implants, and nanofibrillates have been the dosage of interest for the researchers delivering intraperitoneal technological products for diagnosis as well as treatment. Hydrogels, however, present the non-particulate form of delivery that can retain on to the membrane of the peritoneum as well as not to be uptaken or permeated through the membrane. A prerequisite for depot delivery is the possibility of cytotoxicity due to polymer which is however been not observed especially when delivered with albumin-based biodegradable substances. These dosage forms have unique perspective in delivering drug molecules, genes, and peptide molecules as therapeutic moieties. Formulation strategies have focused on the safe portal of medicament, and various methodologies characterized the in vitro and in vivo behavior of formulations while also confirming the aim of therapeutic strategy. The advantage of the therapy can be manifested by shrinkage in the size of tumor through confocal imaging techniques. The human trials depot peritoneal delivery reflects the efficacy of the dosage to treat cancer with fewer adverse effects. Researchers should focus on targeting the drugs to the organs of abdomen through antibody-drug complex or direct targeting of drug to the tumor tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuzar SM, Park EJ, Seo Y, Lee J, Baik SH, Hwang S-J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment. Pharmaceutics. 2020;12(8):736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akagi S, Ando H, Fujita K, Shimizu T, Ishima Y, Tajima K, et al. Therapeutic efficacy of a paclitaxel-loaded nanofibrillated bacterial cellulose (PTX/NFBC) formulation in a peritoneally disseminated gastric cancer xenograft model. Int J Biol Macromol. 2021;174:494–501.

    Article  CAS  PubMed  Google Scholar 

  3. Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blackburn SC, Stanton MP. Anatomy and physiology of the peritoneum. Paper presented at the Seminars in pediatric surgery; 2014.

    Google Scholar 

  5. Braet H, Rahimi-Gorji M, Debbaut C, Ghorbaniasl G, Van Walleghem T, Cornelis S, et al. Exploring high pressure nebulization of Pluronic F127 hydrogels for intraperitoneal drug delivery. Eur J Pharm Biopharm. 2021;169:134–43.

    Article  CAS  PubMed  Google Scholar 

  6. Brown SE, Dubbins PA. Detection of free intraperitoneal fluid in healthy young men. J Ultrasound Med. 2012;31(10):1527–30.

    Article  PubMed  Google Scholar 

  7. Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the tumor microenvironment in colorectal peritoneal metastases. Trends Cancer. 2020;6(3):236–46.

    Article  PubMed  Google Scholar 

  8. Ceelen WP, Flessner MF. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol. 2010;7(2):108–15.

    Article  PubMed  Google Scholar 

  9. Chegini N. Peritoneal molecular environment, adhesion formation and clinical implication. Front Biosci. 2002;7(16):91–115.

    Google Scholar 

  10. Chen C-H, Kuo C-Y, Chen S-H, Mao S-H, Chang C-Y, Shalumon K, Chen J-P. Thermosensitive injectable hydrogel for simultaneous intraperitoneal delivery of doxorubicin and prevention of peritoneal adhesion. Int J Mol Sci. 2018;19(5):1373.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cho H, Jammalamadaka U, Tappa K, Egbulefu C, Prior J, Tang R, Achilefu S. 3D printing of poloxamer 407 nanogel discs and their applications in adjuvant ovarian cancer therapy. Mol Pharm. 2019;16(2):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colby AH, Oberlies NH, Pearce CJ, Herrera VL, Colson YL, Grinstaff MW. Nanoparticle drug-delivery systems for peritoneal cancers: a case study of the design, characterization and development of the expansile nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(3):e1451.

    Article  Google Scholar 

  13. Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis – Mission possible? Adv Drug Deliv Rev. 2017;108:13–24.

    Article  CAS  PubMed  Google Scholar 

  14. Dakwar GR, Zagato E, Delanghe J, Hobel S, Aigner A, Denys H, et al. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater. 2014;10(7):2965–75.

    Article  CAS  PubMed  Google Scholar 

  15. De Souza R, Zahedi P, Allen CJ, Piquette-Miller M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv. 2010;17(6):365–75.

    Article  PubMed  Google Scholar 

  16. Deng Y, Yang F, Cocco E, Song E, Zhang J, Cui J, et al. Improved ip drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci. 2016;113(41):11453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devuyst O, Rippe B. Water transport across the peritoneal membrane. Kidney Int. 2014;85(4):750–8.

    Article  CAS  PubMed  Google Scholar 

  18. Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol Renal Physiol. 1996;270(2):F377–90.

    Article  CAS  Google Scholar 

  19. Fung WW-S, Poon PY-K, Ng JK-C, Kwong VW-K, Pang W-F, Kwan BC-H, et al. Longitudinal changes of nf-κB downstream mediators and peritoneal transport characteristics in incident peritoneal dialysis patients. Sci Rep. 2020;10(1):1–7.

    Article  Google Scholar 

  20. Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gasiorowski JZ, Collier JH. Directed intermixing in multicomponent self-assembling biomaterials. Biomacromolecules. 2011;12(10):3549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, Qian Z. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095–104.

    Article  CAS  PubMed  Google Scholar 

  23. Griset AP, Walpole J, Liu R, Gaffey A, Colson YL, Grinstaff MW. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J Am Chem Soc. 2009;131(7):2469–71.

    Article  CAS  PubMed  Google Scholar 

  24. Grzegorzewska AE, Antoniewicz K. An indirect estimation of effective peritoneal capillary blood flow in peritoneally dialyzed uremic patients. Perit Dial Int. 1993;13(2 suppl):39–40.

    Article  Google Scholar 

  25. Hallaj-Nezhadi S, Dass CR, Lotfipour F. Intraperitoneal delivery of nanoparticles for cancer gene therapy. Future Oncol. 2013;9(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen SF, Lennquist A. Carbon nanotubes added to the SIN list as a nanomaterial of very high concern. Nat Nanotechnol. 2020;15(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  27. Hargrove D, Liang B, Kashfi-Sadabad R, Joshi GN, Gonzalez-Fajardo L, Glass S, et al. Tumor-mesoporous silica nanoparticle interactions following intraperitoneal delivery for targeting peritoneal metastasis. J Control Release. 2020;328:846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle–mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  29. Huang W, Liu X, Queen NJ, Cao L. Targeting visceral fat by intraperitoneal delivery of novel AAV serotype vector restricting off-target transduction in liver. Mol Ther Methods Clin Dev. 2017;6:68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jéquier S, Jéquier J-C, Hanquinet S. Intraperitoneal fluid in children: normal ultrasound findings depend on which scan head you use. Pediatr Radiol. 2003;33:86–91.

    Article  PubMed  Google Scholar 

  31. Jorres A. PD: a biological membrane and a non-biological fluid. Contrib Nephrol. 2003;140:1–9.

    Article  Google Scholar 

  32. Kim J, Shim MK, Cho Y-J, Jeon S, Moon Y, Choi J, et al. The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis. Biomaterials. 2021;279:121189.

    Article  CAS  PubMed  Google Scholar 

  33. Krier F, Riva R, Defrère S, Mestdagt M, Van Langendonckt A, Drion P, et al. Device-based controlled local delivery of anastrozol into peritoneal cavity: in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2014;24(2):198–204.

    Article  CAS  Google Scholar 

  34. Lai KN, Leung JC. Membrane biology during peritoneal dialysis. In: Progress in peritoneal dialysis. IntechOpen; 2011.

    Google Scholar 

  35. Li X, Fan R, Wang Y, Wu M, Tong A, Shi J, et al. In situ gel-forming dual drug delivery system for synergistic combination therapy of colorectal peritoneal carcinomatosis. RSC Adv. 2015;5(123):101494–506.

    Article  CAS  Google Scholar 

  36. Lin X-M, Wang Z-J, Lin Y-X, Chen H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J Surg Oncol. 2021;19(1):1–10.

    Article  Google Scholar 

  37. Liu L, Wu Q, Ma X, Xiong D, Gong C, Qian Z, et al. Camptothecine encapsulated composite drug delivery system for colorectal peritoneal carcinomatosis therapy: biodegradable microsphere in thermosensitive hydrogel. Colloids Surf B: Biointerfaces. 2013;106:93–101.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Z, Wang J, Wientjes MG, Au JL. Intraperitoneal therapy for peritoneal cancer. Future Oncol. 2010;6(10):1625–41.

    Article  PubMed  Google Scholar 

  39. McKenzie M, Betts D, Suh A, Bui K, Tang R, Liang K, et al. Proof-of-concept of polymeric sol-gels in multi-drug delivery and intraoperative image-guided surgery for peritoneal ovarian cancer. Pharm Res. 2016;33:2298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mora-Solano C, Wen Y, Han H, Chen J, Chong AS, Miller ML, et al. Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. Biomaterials. 2017;149:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morano W, Aggarwal A, Love P, Richard S, Esquivel J, Bowne W. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 2016;23(11):373–81.

    Article  CAS  PubMed  Google Scholar 

  42. Nelson KK, Schattner MA, Mendelsohn RB. Methylnaltrexone is safe in cancer patients with peritoneal carcinomatosis. Sci Rep. 2019;9(1):1–4.

    Article  Google Scholar 

  43. Nessim SJ, Bargman JM. The peritoneal–renal syndrome. Nat Rev Nephrol. 2013;9(5):302–6.

    Article  CAS  PubMed  Google Scholar 

  44. Padmakumar S, Menon D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr Drug Deliv. 2019;16(7):654–62.

    Article  CAS  PubMed  Google Scholar 

  45. Padmakumar S, Parayath NN, Nair SV, Menon D, Amiji MM. Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release. 2019;305:29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peti-Peterdi J, Sipos A. A high-powered view of the filtration barrier. J Am Soc Nephrol. 2010;21(11):1835–41.

    Article  PubMed  Google Scholar 

  47. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian H, Qian K, Cai J, Yang Y, Zhu L, Liu B. Therapy for gastric cancer with peritoneal metastasis using injectable albumin hydrogel hybridized with paclitaxel-loaded red blood cell membrane nanoparticles. ACS Biomater Sci Eng. 2019;5(2):1100–12.

    Article  CAS  PubMed  Google Scholar 

  49. Rippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the differences according to pore theory? Perit Dial Int. 2011;31(3):249–58.

    Article  PubMed  Google Scholar 

  50. Rippe B, Krediet RT. Peritoneal physiology-transport of solutes. In: The textbook of peritoneal dialysis. Springer; 1994. p. 69–113.

    Chapter  Google Scholar 

  51. Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation. 2001;8(5):303–20.

    Article  CAS  PubMed  Google Scholar 

  52. Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Aerosolization of nanotherapeutics as a newly emerging treatment regimen for peritoneal carcinomatosis. Cancers. 2019;11(7):906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin M, Snyder HW, Donvito G, Schurman LD, Fox TE, Lichtman AH, et al. Liposomal delivery of diacylglycerol lipase-beta inhibitors to macrophages dramatically enhances selectivity and efficacy in vivo. Mol Pharm. 2017;15(3):721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun B, Taha MS, Ramsey B, Torregrosa-Allen S, Elzey BD, Yeo Y. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals. J Control Release. 2016;235:91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor MJ, Chauhan KP, Sahota TS. Gels for constant and smart delivery of insulin. Br J Diabetes. 2020;20(1):41–51.

    Article  Google Scholar 

  56. Taylor MJ, Tanna S, Sahota T. In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. J Pharm Sci. 2010;99(10):4215–27.

    Article  CAS  PubMed  Google Scholar 

  57. Van Baal J, Van de Vijver K, Nieuwland R, Van Noorden C, Van Driel W, Sturk A, et al. The histophysiology and pathophysiology of the peritoneum. Tissue Cell. 2017;49(1):95–105.

    Article  PubMed  Google Scholar 

  58. Van Oudheusden TR, Grull H, Dankers PYW, De Hingh IHJT. Targeting the peritoneum with novel drug delivery systems in peritoneal carcinomatosis: a review of the literature. Anticancer Res. 2015;35(2):627–34.

    PubMed  Google Scholar 

  59. Williams JD, Craig KJ, von Ruhland C, Topley N, Williams GT, Group BRS. The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int. 2003;64:S43–9.

    Article  Google Scholar 

  60. Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, et al. Mesenchymal stem cells engineered to secrete pigment epithelium-derived factor inhibit tumor metastasis and the formation of malignant ascites in a murine colorectal peritoneal carcinomatosis model. Hum Gene Ther. 2016;27(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  61. Yang, X., Xie, B., Peng, H., Shi, G., Sreenivas, B., Guo, J., . . . He, Y. (2021). Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J Control Release, 329, 454–467.

    Article  CAS  PubMed  Google Scholar 

  62. Yang Z, Li C, Liu W, Zheng Y, Zhu Z, Hua Z, et al. Complications and risk factors for complications of implanted subcutaneous ports for intraperitoneal chemotherapy in gastric cancer with peritoneal metastasis. Chin J Cancer Res. 2020;32(4):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeo Y, Ito T, Bellas E, Highley CB, Marini R, Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann Surg. 2007;245(5):819.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yoshizawa H, Morishita Y, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D. TGF-β1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther. 2015;22(4):333–40.

    Article  CAS  PubMed  Google Scholar 

  65. Zahedi P, Yoganathan R, Piquette-Miller M, Allen C. Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opin Drug Deliv. 2012;9(5):567–83.

    Article  CAS  PubMed  Google Scholar 

  66. Zavaleta CL, Phillips WT, Soundararajan A, Goins BA. Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model. Int J Pharm. 2007;337(1–2):316–28.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Tian Y, Zhu Z, Xu H, Li X, Zheng D, Sun W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci Rep. 2016;6(1):1–14.

    Google Scholar 

  68. Zhao B, Zhou B, Shi K, Zhang R, Dong C, Xie D, et al. Sustained and targeted delivery of siRNA/DP7-C nanoparticles from injectable thermosensitive hydrogel for hepatocellular carcinoma therapy. Cancer Sci. 2021;112(6):2481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, et al. Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharm Sin B. 2019;9(5):1050–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed, M.A. et al. (2023). Peritoneal Implants and Drug Delivery. In: Shegokar, R. (eds) Exploring Drug Delivery to the Peritoneum. Springer, Cham. https://doi.org/10.1007/978-3-031-31694-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31694-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31693-7

  • Online ISBN: 978-3-031-31694-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics