Abstract
We prove an equivalent of the Riemann hypothesis in terms of the functional equation (in its asymmetrical form) and the a-points of the zeta-function, i.e., the roots of the equation \(\zeta (s)=a\), where a is an arbitrary fixed complex number.
Keywords
- Riemann zeta-function
- Riemann hypothesis
- a-points
- Functional equation
Dedicated to the memory of Professor Eduard Wirsing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
The authors’ translation of the German original text: “Es sind bei einer analytischen Funktion die Punkte, an denen sie 0 ist, zwar sehr wichtig; ebenso interessant sind aber die Punkte, an denen sie einen bestimmten Wertaannimmt.”
References
J. Arias de Reyna, On the distribution (mod 1) of the normalized zeros of the Riemann zeta-function. J. Number Theory 153, 37–53 (2015)
S. Baluyot, S.M. Gonek, Explicit formulae and discrepancy estimates for a-points of the Riemann zeta-function. Pacific J. Math. 303(1), 47–71 (2019)
H. Bohr, Über das Verhalten von\(\zeta (s)\)in der Halbebene\(\sigma >1\) (Göttinger Nachrichten, 1911), pp. 409–428
H. Bohr, B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion. Acta Math. 54, 1–35 (1930)
H. Bohr, E. Landau, J.E. Littlewood, Sur la fonction\(\zeta (s)\)dans le voisinage de la droite\(\sigma =1/2\). (Bull. de l’Acad. royale de Belgique, 1913), pp. 3–35
E. Bombieri, Sulle formule di A. Selberg generalizzate per classi di funzioni aritmetiche e le applicazioni al problema del resto nel ‘Primzahlsatz’. Riv. Mat. Univ. Parma II. Ser. 3, 393–440 (1962)
E. Bombieri, A. Ghosh, On the Davenport-Heilbronn function. Uspekhi Mat. Nauk 66(2) (398), 15–66 (2011). In Russian; translated in Russ. Math. Surv. 66(2), 221–270 (2011). Erratum in Uspekhi Mat. Nauk 66(3) (399), 208 (2011)
R. Garunkštis, J. Steuding, On the roots of the equation \(\zeta (s)=a\). Abh. Math. Semin. Univ. Hamburg 84, 1–15 (2014)
S.M. Gonek, Mean values of the Riemann zeta-function and its derivatives. Invent. Math. 75, 123–141 (1984)
A.E. Ingham, The Distribution of Prime Numbers (Cambridge University Press, 1932)
A. Ivić, The Riemann Zeta-function (John Wiley & Sons, 1985)
E. Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion, in Proc. Fifth Internat. Math. Congr., vol. 1 (1913), pp. 93–108
E. Landau, Über den Wertevorrat von\(\zeta (s)\)in der Halbebene\(\sigma >1\) (Gött. Nachr., 1933), pp. 81–91
N. Levinson, Almost all roots of \(\zeta (s)=a\) are arbitrarily close to \(\sigma =1/2\). Proc. Natl. Acad. Sci. U S A 72, 1322–1324 (1975)
B. Riemann, Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse (Monatsber. Preuss. Akad. Wiss., Berlin, 1859), pp. 671–680
J. Schoißengeier, The connection between the zeros of the \(\zeta \)-function and sequences \((g(p))\), p prime mod 1. Monatsh. Math. 87, 21–52 (1979)
E.C. Titchmarsh, The Theory of Functions, 2nd edn. (Oxford University Press, 1939)
E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (Clarendon Press, Oxford, 1986), 2nd ed. with comments by D.R. Heath-Brown
H. von Koch, Sur la distribution des nombres premiers. Acta Math. 24, 169–182 (1901)
E. Wirsing, Elementare Beweise des Primzahlsatzes mit Restglied I, II. J. Reine Angew. Math. 211, 205–214 (1962); 214/215 (1964), 1–18
Acknowledgements
The first named author was supported by FWF project M 3246-N. The third author was supported by JSPS KAKENHI Grant Numbers 18K13400 and 22K13895, and also MEXT Initiative for Realizing Diversity in the Research Environment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sourmelidis, A., Steuding, J., Suriajaya, A.I. (2023). The a-Points of the Riemann Zeta-Function and the Functional Equation. In: Maier, H., Steuding, J., Steuding, R. (eds) Number Theory in Memory of Eduard Wirsing. Springer, Cham. https://doi.org/10.1007/978-3-031-31617-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-31617-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31616-6
Online ISBN: 978-3-031-31617-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)