Skip to main content

Physiology of Sperm Maturation and Fertilization

  • Chapter
  • First Online:
Andrology

Abstract

Successful fertilization of an egg is the ultimate goal of a mature sperm. For this process to occur correctly in vivo, the natural fertilization process follows a time- and location-dependent sequence of complex steps, beginning with production in the testis, maturation in the epididymis, and finally the fertilization of the egg. Specific proteins and surface components in and on the spermatozoa play an important role in this process. In fertile men, natural fertilization follows the logically determined sequence of events, but in infertile men, these pathways can be partially shortened therapeutically to ultimately achieve paternity. Thus, not only ejaculated spermatozoa, e.g., in vivo after insemination in the female genital tract, but also spermatozoa from the testis and epididymis, after injection into the egg, can perform predetermined fertilization steps in vitro and thus lead to an intact pregnancy. This chapter follows the path of spermatozoa from the site of production to the fertilizable egg and describes important processes that spermatozoa undergo to ultimately reach their destination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amdani SN, Yeste M, Jones C, Coward K (2016) Phospholipase C zeta (PLCζ) and male infertility: clinical update and topical developments. Adv Biol Regul 61:58–67

    CAS  PubMed  Google Scholar 

  • Angelopoulos T, Adler A, Krey L, Licciardi F, Noyes N, McCullough A (1999) Enhancement or initiation of testicular sperm motility by in vitro culture of testicular tissue. Fertil Steril 71:240–243

    CAS  PubMed  Google Scholar 

  • Archer SL, Roudebush WE (2013) Enhancement of sperm motility using pentoxifylline and platelet-activating factor. Methods Mol Biol 2013:241–245

    Google Scholar 

  • Ashary N, Tiwari A, Modi D (2018) Embryo implantation: war in times of love. Endocrinology 159:1188–1198

    CAS  PubMed  Google Scholar 

  • Bedford JM (1988) The bearing of epididymal function in strategies for In vitro fertilization and gamete intrafollicular transfer. New York Acad Sci USA 541:284–291

    CAS  Google Scholar 

  • Bedford JM (1994) The status and the state of the human epididymis. Hum Reprod 9:2187–2199

    CAS  PubMed  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Björkgren I, Sipilä P (2019) The impact of epididymal proteins on sperm function. Reproduction 158:R155–R167

    PubMed  Google Scholar 

  • Breitbart H, Cohen G, Rubinstein S (2005) Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129:263–268

    CAS  PubMed  Google Scholar 

  • Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krähling M, Müller A, Kaupp UB, Strünker T (2012) The CatSper channel: a polymodal chemosensor in human sperm. EMBO J 31:1654–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breton S, Nair AV, Battistone MA (2019) Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 7:631–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannarella R, Crafa A, Barbagallo F, Mongioì LM, Condorelli RA, Aversa A, Calogero AE, La Vignera S (2020) Seminal plasma proteomic biomarkers of oxidative stress. Int J Mol Sci 211(23):9113

    Google Scholar 

  • Carr DW, Newell AE (2007) The role of A-kinase anchoring proteins (AKaps) in regulating sperm function. Soc Reprod Fertil Suppl 63:135–141

    CAS  PubMed  Google Scholar 

  • Carrell DT (2012) Epigenetics of the male gamete. Fertil Steril 97:267–274

    CAS  PubMed  Google Scholar 

  • Chansel-Debordeaux L, Dandieu S, Bechoua S, Jimenez C (2015) Reproductive outcome in globozoospermic men: update and prospects. Andrology 3:1022–1034

    CAS  PubMed  Google Scholar 

  • Cissen M, Bensdorp A, Cohlen BJ, Repping S, de Bruin JP, van Wely M (2016) Assisted reproductive technologies for male subfertility. Cochrane Database Syst Rev 2:CD000360

    PubMed  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    CAS  PubMed  Google Scholar 

  • Cooper TG (2007a) Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl 9:533–539

    CAS  PubMed  Google Scholar 

  • Cooper TG (2007b) The human epididymis, sperm maturation and storage. ANIR-ANHP 9:18–21

    Google Scholar 

  • Cooper TG (2011) The epididymis, cytoplasmic droplets and male fertility. Asian J Androl 13:130–138

    PubMed  Google Scholar 

  • Cooper TG, Keck C, Oberdieck U, Nieschlag E (1993) Effects of multiple ejaculations after extended periods of sexual abstinence on total, motile and normal sperm numbers, as well as accessory gland secretions from healthy normal and oligozoospermic men. Hum Reprod 8:1251–1258

    CAS  PubMed  Google Scholar 

  • Cooper TG, Barfield JP, Yeung CH (2005) Changes in osmolality during liquefaction of human semen. Int J Androl 28:58–60

    PubMed  Google Scholar 

  • Correa-Perez JR, Fernandez-Pelegrina R, Aslanis P, Zavos PM (2004) Clinical management of men producing ejaculates characterized by high levels of dead sperm and altered seminal plasma factors consistent with epididymal necrospermia. Fertil Steril 81:1148–1150

    PubMed  Google Scholar 

  • Cross NL (2003) Decrease in order of human sperm lipids during capacitation. Biol Reprod 69:529–534

    CAS  PubMed  Google Scholar 

  • Dandekar P, Aggeler J, Talbot P (1992) Structure, distribution and composition of the extracellular matrix of human oocytes and cumulus masses. Hum Reprod 7:391–398

    CAS  PubMed  Google Scholar 

  • De Jonge C, LaFromboise M, Bosmans E, Ombelet W, Cox A, Nijs M (2004) Influence of the abstinence period on human sperm quality. Fertil Steril 82:57–65

    PubMed  Google Scholar 

  • De Kretser DM, Huidobro C, Southwick GJ, Temple-Smith PD (1998) The role of the epididymis in human infertility. J Reprod Fertil Suppl 53:271–275

    PubMed  Google Scholar 

  • Dietzel E, Wessling J, Floehr J, Schäfer C, Ensslen S, Denecke B, Rösing B, Neulen J, Veitinger T, Spehr M, Tropartz T, Tolba R, Renné T, Egert A, Schorle H, Gottenbusch Y, Hildebrand A, Yiallouros I, Stöcker W, Weiskirchen R, Jahnen-Dechent W (2013) Fetuin-B, a liver-derived plasma protein is essential for fertilization. Dev Cell 25(1):106–112

    CAS  PubMed  Google Scholar 

  • Dubé E, Hermo L, Chan PT, Cyr DG (2008) Alterations in gene expression in the caput epididymides of nonobstructive azoospermic men. Biol Reprod 78:342–351

    PubMed  Google Scholar 

  • Flori F, Ermini L, La Sala GB, Nicoli A, Capone A, Focarelli R, Rosati F, Giovampaola CD (2008) The GPI-anchored CD52 antigen of the sperm surface interacts with semenogelin and participates in clot formation and liquefaction of human semen. Mol Reprod Dev 75:326–335

    CAS  PubMed  Google Scholar 

  • Florman HM, Fissore RA (2015) Fertilization in Mammals. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s Physiology of Reproduction (Fourth Edition). Academic Press, Cambridge, MA

    Google Scholar 

  • Freitas MJ, Vijayaraghavan S, Fardilha M (2017) Signaling mechanisms in mammalian sperm motility. Biol Reprod 1:2–12

    Google Scholar 

  • Gadella BM, Harrison RA (2002) Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350

    CAS  PubMed  Google Scholar 

  • Garrett C, Liu DY, Baker HW (2007) Comparison of human sperm morphometry assessment models based on zona pellucida selectivity. Soc Reprod Fertil Suppl 65:357–361

    CAS  PubMed  Google Scholar 

  • Gupta SK (2014) Unraveling the intricacies of mammalian fertilization. Asian J Androl 16:801–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK (2018) The human egg’s zona pellucida. Curr Top Dev Biol 130:379–411

    CAS  PubMed  Google Scholar 

  • Halvaei I, Ghazali S, Nottola SA, Khalili MA (2018) Cleavage-stage embryo micromanipulation in the clinical setting. Syst Biol Reprod Med 64:157–168

    PubMed  Google Scholar 

  • Harrison RA, Gadella BM (2005) Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63:342–351

    CAS  PubMed  Google Scholar 

  • Hess RA, Cooke PS (2018) Estrogen in the male: a historical perspective. Biol Reprod 99(1):27–44

    PubMed  PubMed Central  Google Scholar 

  • Honda A, Siruntawinwti J, Baba T (2002) Role of acrosomal matrix proteinases in sperm-zona pellucida interactions. Hum Reprod Update 5:405–412

    Google Scholar 

  • Hosseini A, Khalili MA (2017) Improvement of motility after culture of testicular spermatozoa: the effects of incubation timing and temperature. Transl Androl Urol 6:271–276

    PubMed  PubMed Central  Google Scholar 

  • Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin super family protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    CAS  PubMed  Google Scholar 

  • Inoue N, Ikawa M, Okabe M (2011) The mechanism of sperm–egg interaction and the involvement of IZUMO1 in fusion. Asian J Androl 13:81–87

    CAS  PubMed  Google Scholar 

  • Ito C, Toshimori K (2016) Acrosome markers of human sperm. Anat Sci Int 91:128–142

    CAS  PubMed  Google Scholar 

  • James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M, Salas-Huetos A (2020) The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int J Mol Sci 2921:5377

    Google Scholar 

  • Johnson L, Varner DD (1988) Effect of daily sperm production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod 39:812–817

    CAS  PubMed  Google Scholar 

  • Jones R, James PS, Howes L, Bruckbauer A, Klenerman D (2007) Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 9:438–444

    CAS  PubMed  Google Scholar 

  • Jonsson M, Linse S, Forhm B, Lundwall A, Malm J (2005) Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochem J 387:47–453

    Google Scholar 

  • Kim YH, Haidl G, Schaefer M, Egner U, Mandal A, Herr JC (2007) Compartmentalization of a unique ADP/ATP carrier protein SFED (sperm flagellar energy carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol 302:463–476

    CAS  PubMed  Google Scholar 

  • Kirchhoff C (2007) Human epididymis - specific gene expression. ANIR 9:25–42

    Google Scholar 

  • Kishimoto T (2005) Developmental biology: cell cycle unleashed. Nature 437:1048–1052

    Google Scholar 

  • Kunz G, Beil D, Huppert P, Leyendecker G (2007) Oxytocin-a stimulator of directed sperm transport in humans. Reprod Biomed Online 14:32–39

    CAS  PubMed  Google Scholar 

  • La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG (2016) Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol 411:172–182

    PubMed  PubMed Central  Google Scholar 

  • Laurentino S, Borgmann J, Gromoll J (2016) On the origin of sperm epigenetic heterogeneity. Reproduction 151:R71–R78

    CAS  PubMed  Google Scholar 

  • Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, Hughes DC, Barratt CL (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19:1580–1586

    CAS  PubMed  Google Scholar 

  • Légaré C, Thabet M, Sullivan R (2004) Expression of heat shock protein 70 in normal and cryptorchid human excurrent duct. Mol Hum Reprod 10:197–202

    PubMed  Google Scholar 

  • Levitas E, Lunenfeld E, Weiss N, Friger M, Har-Vardi I, Koifman A, Potashnik G (2005) Relationship between duration of sexual abstinence and semen quality; analysis of 9,489 semen samples. Fertil Steril 83:1680–1686

    PubMed  Google Scholar 

  • Lindemann CB, Lesich KA (2016) Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken) 73:652–666

    CAS  PubMed  Google Scholar 

  • Linge HM, Collin M, Giwercman A, Malm J, Bjartell A, Egestan A (2008) The antibacterial chemokine MIG/CXCL9 s constitutively expressed in epithelial cells of the male urogenital tract and is present in seminal plasma. J Interf Cytokine Res 28:191–196

    CAS  Google Scholar 

  • Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471(7338):387–391

    CAS  PubMed  Google Scholar 

  • Liu DY, Clarke GN, Baker HW (2005) Exposure of actin on the surface of the human sperm head during in vitro culture relates to sperm morphology, capacitation and zona binding. Hum Reprod 20:999–1005

    CAS  PubMed  Google Scholar 

  • Mao HT, Yang WX (2013) Modes of acrosin functioning during fertilization. Gene 526:75–79

    CAS  PubMed  Google Scholar 

  • Marchetti C, Jouy N, Leroy-Martin B, Formstecher P, Marchetti P (2004) Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod 19:2267–2276

    PubMed  Google Scholar 

  • Mitchell LA, Nixon B, Baker MA, Aitken RJ (2008) Investigation of the role of SRC in capacitation associated tyrosine phosphorylation of human spermatozoa. Mol Hum Reprod 14:235–243

    CAS  PubMed  Google Scholar 

  • Moskovtsev SI, Jarvi K, Légaré C, Sullivan R, Mullen JB (2007) Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril 88:1455–1457

    PubMed  Google Scholar 

  • Navarra CS, Simerly C, Zoran S, Schatten G (1995) The sperm centrosome during fertilization in mammals: implications for fertility and reproduction. Reprod Fertil Develop 7:747–754

    Google Scholar 

  • Neugebauer DC, Neuwinger J, Jockenhövel F, Nieschlag E (1990) 9 + 0′ axoneme in spermatozoa and some nasal cilia of a patient with totally immotile spermatozoa associated with thickened sheath and short midpiece. Hum Reprod 5:981–986

    CAS  PubMed  Google Scholar 

  • Nordhoff V (2015) How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology 3:156–162

    CAS  PubMed  Google Scholar 

  • O’Neill CL, Chow S, Rosenwaks Z, Palermo GD (2018) Development of ICSI. Reproduction. 156:F51–F58

    PubMed  Google Scholar 

  • Oseguera-López I, Ruiz-Díaz S, Ramos-Ibeas P, Pérez-Cerezales S (2019) Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front Cell Dev Biol 7:298

    PubMed  PubMed Central  Google Scholar 

  • Overstreet JW, Hembree WC (1976) Penetration of the zona pellucida of nonliving human oocytes by human spermatozoa in vitro. Fertil Steril 27:815–831

    CAS  PubMed  Google Scholar 

  • Parrington J, Arnoult C, Fissore RA (2019) The eggstraordinary story of how life begins. Mol Reprod Dev 86:4–19

    CAS  PubMed  Google Scholar 

  • Pereira R, Sá R, Barros A, Sousa M (2017) Major regulatory mechanisms involved in sperm motility. Asian J Androl. 19:5–14

    CAS  PubMed  Google Scholar 

  • Pöllänen P, Cooper TG (1994) Immunology of the testicular excurrent ducts. J Reprod Immunol 26:167–216

    PubMed  Google Scholar 

  • Primakoff P, Myles DG (2007) Cell-cell membrane fusion during mammalian fertilization. FEBS Lett 581:2174–2180

    CAS  PubMed  Google Scholar 

  • Prudencio C, Seol B, Esteves SC (2010) Reproductive potential of azoospermic men undergoing intracytoplasmic sperm injection is dependent on the type of azoospermia. Fertil Steril 94(Suppl):S232–S233

    Google Scholar 

  • Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J (2018) Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361(6398):189–193

    CAS  PubMed  Google Scholar 

  • Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    CAS  PubMed  Google Scholar 

  • Reyes-Moreno C, Laflamme J, Frenette G, Sirard MA, Sullivan R (2008) Spermatozoa modulate epididymal cell proliferation and protein secretion in vitro. Mol Reprod Dev 75:512–520

    CAS  PubMed  Google Scholar 

  • Rinaldi VD, Donnard E, Gellatly K, Rasmussen M, Kucukural A, Yukselen O, Garber M, Sharma U, Rando OJ (2020) An atlas of cell types in the mouse epididymis and vas deferens. elife 30:e55474

    Google Scholar 

  • Sathananthan AH, Ratnam SS, Ng SC, Tarín JJ, Gianaroli L, Trounson A (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11:345–356

    CAS  PubMed  Google Scholar 

  • Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H, Wachten D, Tüttelmann F, Röpke A, Kaupp UB, Wang T, Wagner A, Krallmann C, Kliesch S, Fallnich C, Strünker T (2020) Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling. EMBO J 17:e102363

    Google Scholar 

  • Schwarzer JU, Steinfatt H (2013) Current status of vasectomy reversal. Nat Rev Urol 10:195–205

    PubMed  Google Scholar 

  • Shadan S, James PS, Howes EAJR (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71:253–265

    CAS  PubMed  Google Scholar 

  • Shefi S, Raviv G, Eisenberg ML, Weissenberg R, Jalalian L, Levron J, Band G, Turek PJ, Madgar I (2006) Posthumous sperm retrieval analysis of time interval to harvest sperm. Hum Reprod 21:2890–2893

    PubMed  Google Scholar 

  • Soler C, Cooper TG (2016) Foreword to Sperm morphometrics today and tomorrow (special issue in Asian Journal of Andrology). Asian J Androl 18:815–818

    PubMed  PubMed Central  Google Scholar 

  • Soler C, Pérez-Sánchez F, Schulze H, Bergmann M, Oberpenning F, Yeung C, Cooper TG (2000) Objective evaluation of the morphology of human epididymal sperm heads. Int J Androl 23:77–84

    CAS  PubMed  Google Scholar 

  • Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 471(7338):382–386

    PubMed  Google Scholar 

  • Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12:23–37

    CAS  PubMed  Google Scholar 

  • Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587

    CAS  PubMed  Google Scholar 

  • Sullivan R, Légaré C, Villeneuve M, Foliguet B, Bissonnette F (2006) Levels of P34H, a sperm protein of epididymal origin, as a predictor of conventional in vitro fertilization outcome. Fertil Steril 85:1557–1559

    PubMed  Google Scholar 

  • Sullivan R, Légaré C, Lamontagne-Proulx J, Breton S, Soulet D (2019) Revisiting structure/functions of the human epididymis. Andrology 7:7748–7757

    Google Scholar 

  • Sun B, Yeh J (2020) Calcium oscillatory patterns and oocyte activation during fertilization: a possible mechanism for total fertilization failure (TFF) in human in vitro fertilization? Reprod Sci 28(3):639–648

    PubMed  Google Scholar 

  • Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur-Kaspa I, Eisenbach M (2005) Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 20:761–767

    CAS  PubMed  Google Scholar 

  • Tournaye H (2012) Male factor infertility and ART. Asian J Androl 14:103–108

    PubMed  Google Scholar 

  • van Wely M, Barbey N, Meissner A, Repping S, Silber SJ.van Wely M, et al. (2015) Live birth rates after MESA or TESE in men with obstructive azoospermia: is there a difference? Hum Reprod 30:761–766

    PubMed  Google Scholar 

  • Vjugina U, Evans JP (2008) New insights into the molecular basis of mammalian sperm-egg membrane interactions. Front Biosci 13:462–476

    CAS  PubMed  Google Scholar 

  • von Stetina JR, Orr-Weaver TL (2011) Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 3:a005553

    Google Scholar 

  • WHO (2010) WHO Laboratory manual for the examination and processing of human semen. WHO, Geneva

    Google Scholar 

  • Williams CJ (2002) Signalling mechanisms of mammalian oocyte activation. Hum Reprod Update 8:313–321

    CAS  PubMed  Google Scholar 

  • Wu B, Wong D, Lu S et al (2005) Optimal use of fresh and frozen-thawed testicular sperm for intracytoplasmic sperm injection in azoospermic patients. J Assist Reprod Genet 22:389–394

    PubMed  PubMed Central  Google Scholar 

  • Yan Y, Liu H, Zhang B, Liu R (2020) A PMMA-based microfluidic device for human sperm evaluation and screening on swimming capability and swimming persistence. Micromachines (Basel) 11:793

    PubMed  Google Scholar 

  • Yanagimachi R (1994) The physiology of reproduction. In: Knobil E, Neill JD (eds.) 2nd edn. Raven Press, New York

    Google Scholar 

  • Yelumalai S, Yeste M, Jones C, Amdani SN, Kashir J, Mounce G, Da Silva SJ, Barratt CL, McVeigh E, Coward K (2015) Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril 104:561–8.e4

    CAS  PubMed  Google Scholar 

  • Yeste M, Jones C, Amdani SN, Coward K (2017) Oocyte activation and fertilisation: crucial contributors from the sperm and oocyte. Results Probl Cell Differ 59:213–239

    CAS  PubMed  Google Scholar 

  • Yeung CH, Cooper TG, Bergmann M, Schulze H (1991) Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am J Anat 191:261–279

    CAS  PubMed  Google Scholar 

  • Yeung CH, Cooper TG, Oberpenning F, Schulze H, Nieschlag E (1993) Changes in movement characteristics of human spermatozoa along the length of the epididymis. Biol Reprod 49:274–280

    CAS  PubMed  Google Scholar 

  • Yeung CH, Nashan D, Sorg C, Oberpenning F, Schulze H, Nieschlag E, Cooper TG (1994) Basal cells of the human epididymis - antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 50:917–926

    CAS  PubMed  Google Scholar 

  • Yoshida K, Kawano N, Yoshiike M, Yoshida M, Iwamato T, Morisawa M (2008) Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Human Reprod 14:151–156

    CAS  Google Scholar 

  • Zarintosh RJ, Cross NL (1996) Unesterified cholesterol content of human sperm regulates the response of the acrosome to the agonist, progesterone. Biol Reprod 55:19–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Nordhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nordhoff, V., Wistuba, J. (2023). Physiology of Sperm Maturation and Fertilization. In: Nieschlag, E., Behre, H.M., Kliesch, S., Nieschlag, S. (eds) Andrology. Springer, Cham. https://doi.org/10.1007/978-3-031-31574-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31574-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31573-2

  • Online ISBN: 978-3-031-31574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics