Skip to main content

Probing the Horizon of Black Holes with Gravitational Waves

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

Abstract

Gravitational waves open the possibility to investigate the nature of compact objects and probe the horizons of black holes. Some models of modified gravity predict the presence of horizonless and singularity-free compact objects. Such dark compact objects would emit a gravitational-wave signal which differs from the standard black hole scenario. In this chapter, we overview the phenomenology of dark compact objects by analysing their characteristic frequencies in the ringdown and the emission of gravitational-wave echoes in the postmerger signal. We show that future gravitational-wave detectors will allow us to perform model-independent tests of the black hole paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Carter, Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    Article  ADS  Google Scholar 

  2. D.C. Robinson, Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  ADS  Google Scholar 

  3. R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Chandrasekhar, S.L. Detweiler, The quasi-normal modes of the Schwarzschild black hole. Proc. Roy. Soc. Lond. A 344, 441–452 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Abbott, et al., [LIGO Scientific, VIRGO and KAGRA], Tests of General Relativity with GWTC-3. arXiv:2112.06861 [gr-qc]

    Google Scholar 

  6. E. Berti, V. Cardoso, C.M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Rel. 22(1), 4 (2019)

    Google Scholar 

  8. S.D. Mathur, The Fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S.L. Liebling, C. Palenzuela, Dynamical boson stars. Living Rev. Rel. 15, 6 (2012)

    Article  MATH  Google Scholar 

  10. M.A. Abramowicz, W. Kluzniak, J.P. Lasota, No observational proof of the black hole event-horizon. Astron. Astrophys. 396, L31–L34 (2002)

    Article  ADS  MATH  Google Scholar 

  11. K. Akiyama, et al., [Event Horizon Telescope], First M87 event horizon telescope results. V. physical origin of the asymmetric ring. Astrophys. J. Lett. 875(1), L5 (2019)

    Google Scholar 

  12. J.C. Bustillo, N. Sanchis-Gual, A. Torres-Forné, J.A. Font, A. Vajpeyi, R. Smith, C. Herdeiro, E. Radu, S.H.W. Leong, GW190521 as a merger of proca stars: a potential new vector boson of \(8.7\times 10^{-13}\) eV. Phys. Rev. Lett. 126(8), 081101 (2021)

    Google Scholar 

  13. R. Abbott, et al., [LIGO Scientific and Virgo], GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896(2), L44 (2020)

    Google Scholar 

  14. E. Maggio, P. Pani, G. Raposo, Testing the nature of dark compact objects with gravitational waves. arXiv:2105.06410 [gr-qc]

    Google Scholar 

  15. T. Regge, J.A. Wheeler, Stability of a schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)

    Article  ADS  Google Scholar 

  17. E. Maggio, P. Pani, V. Ferrari, Exotic compact objects and how to quench their ergoregion instability. Phys. Rev. D 96(10), 104047 (2017)

    Google Scholar 

  18. V. Cardoso, E. Franzin, P. Pani, Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(17), 171101 (2016). Erratum: Phys. Rev. Lett. 117(8), 089902 (2016)

    Google Scholar 

  19. E. Maggio, V. Cardoso, S.R. Dolan, P. Pani, Ergoregion instability of exotic compact objects: electromagnetic and gravitational perturbations and the role of absorption. Phys. Rev. D 99(6), 064007 (2019)

    Google Scholar 

  20. A. Vilenkin, Exponential amplification of waves in the gravitational field of ultrarelativistic rotating body. Phys. Lett. B 78, 301–303 (1978)

    Article  ADS  Google Scholar 

  21. A.A. Starobinskil, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Sov. Phys. JETP 65(1), 1–5 (1974)

    ADS  Google Scholar 

  22. T. Damour, Surface effects in black-hole physics. in Proceedings of the Second Marcel Grossmann Meeting of General Relativity, ed. by R. Ruffini (North Holland, Amsterdam, 1982), pp. 587–608

    Google Scholar 

  23. K.S. Thorne, R. Price, D. Macdonald, Black Holes: The Membrane Paradigm. Yale University Press (1986)

    Google Scholar 

  24. G. Darmois, Les équations de la gravitation einsteinienne. Mémorial Sci. Math. fascicule 25, 1–48 (1927)

    Google Scholar 

  25. W. Israel, Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 44S10, 1 (1966). erratum: Nuovo Cim. B 48, 463 (1967)

    Google Scholar 

  26. E. Maggio, L. Buoninfante, A. Mazumdar, P. Pani, How does a dark compact object ringdown? Phys. Rev. D 102(6), 064053 (2020)

    Google Scholar 

  27. A. Ghosh, R. Brito, A. Buonanno, Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations. Phys. Rev. D 103(12), 124041 (2021)

    Google Scholar 

  28. J. Abedi, N. Afshordi, N. Oshita, Q. Wang, Quantum black holes in the sky. Universe 6(3), 43 (2020)

    Google Scholar 

  29. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the abyss: tentative evidence for planck-scale structure at black hole horizons. Phys. Rev. D 96(8), 082004 (2017)

    Google Scholar 

  30. A. Maselli, S.H. Völkel, K.D. Kokkotas, Parameter estimation of gravitational wave echoes from exotic compact objects. Phys. Rev. D 96(6), 064045 (2017)

    Google Scholar 

  31. Z. Mark, A. Zimmerman, S.M. Du, Y. Chen, A recipe for echoes from exotic compact objects. Phys. Rev. D 96(8), 084002 (2017)

    Google Scholar 

  32. A. Testa, P. Pani, Analytical template for gravitational-wave echoes: signal characterization and prospects of detection with current and future interferometers. Phys. Rev. D 98(4), 044018 (2018)

    Google Scholar 

  33. E. Maggio, A. Testa, S. Bhagwat, P. Pani, Analytical model for gravitational-wave echoes from spinning remnants. Phys. Rev. D 100(6), 064056 (2019)

    Google Scholar 

  34. K.W. Tsang, M. Rollier, A. Ghosh, A. Samajdar, M. Agathos, K. Chatziioannou, V. Cardoso, G. Khanna C. Van Den Broeck, A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes. Phys. Rev. D 98(2), 024023 (2018)

    Google Scholar 

  35. R.S. Conklin, B. Holdom, J. Ren, Gravitational wave echoes through new windows. Phys. Rev. D 98(4), 044021 (2018)

    Google Scholar 

  36. J. Westerweck, A. Nielsen, O. Fischer-Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G. Meadors, A.H. Nitz, Low significance of evidence for black hole echoes in gravitational wave data. Phys. Rev. D 97(12), 124037 (2018)

    Google Scholar 

  37. A.B. Nielsen, C.D. Capano, O. Birnholtz, J. Westerweck, Parameter estimation and statistical significance of echoes following black hole signals in the first Advanced LIGO observing run. Phys. Rev. D 99(10), 104012 (2019)

    Google Scholar 

  38. K.W. Tsang, A. Ghosh, A. Samajdar, K. Chatziioannou, S. Mastrogiovanni, M. Agathos, C. Van Den Broeck, A morphology-independent search for gravitational wave echoes in data from the first and second observing runs of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101(6), 064012 (2020)

    Google Scholar 

  39. R.K.L. Lo, T.G.F. Li, A.J. Weinstein, Template-based gravitational-wave echoes search using Bayesian model selection. Phys. Rev. D 99(8), 084052 (2019)

    Google Scholar 

  40. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, et al., The Einstein telescope: a third-generation gravitational wave observatory. Class. Quant. Grav. 27, 194002 (2010)

    Article  ADS  Google Scholar 

  41. D. Reitze, R.X. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley, D.A. Brown, Y. Chen, D. Coyne, R. Eisenstein, et al., Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51(7), 035 (2019)

    Google Scholar 

  42. P. Amaro-Seoane, et al., [LISA], Laser interferometer space antenna. arXiv:1702.00786 [astro-ph.IM]

    Google Scholar 

Download references

Acknowledgements

EM acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG)—project number: 386119226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Maggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maggio, E. (2023). Probing the Horizon of Black Holes with Gravitational Waves. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_9

Download citation

Publish with us

Policies and ethics