Skip to main content

Cosmic Searches for Lorentz Invariance Violation

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

Abstract

Cosmic messengers (gamma rays, cosmic rays, neutrinos and gravitational waves) provide a powerful complementary way to search for Lorentz invariance violating effects to laboratory-based experiments. The long baselines and high energies involved make Cherenkov telescopes, air-shower arrays, neutrino telescopes and gravitational wave detectors unique tools to probe the expected tiny effects that the breaking of Lorentz invariance would cause in the propagation of these messengers, in comparison with the standard scenario. In this chapter we explain the expected effects that the mentioned detectors can measure and summarize current results of searches for Lorentz violation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This process is usually known as vacuum Cherenkov emission although it does not really resemble Cherenkov radiation since the usual Cherenkov radiation is emitted by the media which the relativistic particle traverses, not by direct radiation from the particle itself.

  2. 2.

    Cosmic rays can also be detected directly by placing particle detectors in space, e.g. [114, 115], although the necessarily small detection area of these kind of detectors limit their energy reach and detection rate.

  3. 3.

    Tests using relative timing with respect to other messengers or direction-dependent observables are similar to what was discussed in Sect. 6.2.2

  4. 4.

    https://qg-mm.unizar.es/wiki/.

References

  1. D. Colladay, V.A. Kostelecky, CPT violation and the standard model. Phys. Rev. D 55, 6760–6774 (1997)

    Article  ADS  Google Scholar 

  2. D. Colladay, V.A. Kostelecky, Lorentz violating extension of the standard model. Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  3. V.A. Kostelecky, M. Mewes, Lorentz and CPT violation in neutrinos. Phys. Rev. D 69, 016005 (2004)

    Article  ADS  Google Scholar 

  4. D. Hooper, D. Morgan, E. Winstanley, Lorentz and CPT invariance violation in high-energy neutrinos. Phys. Rev. D 72, 065009 (2005)

    Article  ADS  Google Scholar 

  5. A. Kostelecky, M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012)

    Article  ADS  Google Scholar 

  6. J.S. Diaz, Neutrinos as probes of Lorentz invariance. Adv. High Energy Phys. 2014, 962410 (2014)

    Article  Google Scholar 

  7. G. Amelino-Camelia, Doubly special relativity. Nature 418, 34–35 (2002)

    Article  ADS  MATH  Google Scholar 

  8. G. Amelino-Camelia, Doubly-special relativity: facts, myths and some key open issues. Symmetry 2, 230–271 (2010)

    Article  ADS  MATH  Google Scholar 

  9. E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl, S. Schlamminger, Torsion balance experiments: a low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 62, 102–134 (2009)

    Article  ADS  Google Scholar 

  10. M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark, Search for new physics with atoms and molecules. Rev. Mod. Phys. 90(2), 025008 (2018)

    Google Scholar 

  11. A.N. Ivanov, M. Wellenzohn, H. Abele, Probing of violation of Lorentz invariance by ultracold neutrons in the standard model extension. Phys. Lett. B 797, 134819 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Zhang, J. Bi, Y. Zhi, J. Peng, L. Li, L. Chen, Test of Lorentz invariance using rotating ultra-stable optical cavities. Phys. Lett. A 416, 127666 (2021)

    Article  Google Scholar 

  13. Z. Cao et al., Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 \({\gamma }\)-ray Galactic sources. Nature 594, 33–36 (2021)

    Google Scholar 

  14. M. Holler et al., Observations of the Crab Nebula with H.E.S.S. phase II. PoS ICRC2015, 847 (2016)

    Google Scholar 

  15. M. Holler, A. Balzer, R. Chalmé-Calvet, M.D. Naurois, D. Zaborov, Photon reconstruction for H.E.S.S. using a semi-analytical model. PoS ICRC2015, 980 (2016)

    Google Scholar 

  16. J. Aleksić et al., The major upgrade of the MAGIC telescopes, Part I: the hardware improvements and the commissioning of the system. Astropart. Phys. 72, 61–75 (2016)

    Google Scholar 

  17. J. Aleksić et al., The major upgrade of the MAGIC telescopes, Part II: a performance study using observations of the Crab Nebula. Astropart. Phys. 72, 76–94 (2016)

    Google Scholar 

  18. N. Park, Performance of the VERITAS experiment. PoS ICRC2015, 771 (2016)

    Google Scholar 

  19. B.S. Acharya et al., Science with the Cherenkov Telescope Array (World Scientific Publishing, Singapore, 2018)

    Google Scholar 

  20. M. Spurio, Indirect Cosmic Rays Detection: Particle Showers in the Atmosphere (Springer, Cham, 2015)

    Google Scholar 

  21. A. De Angelis, M. Pimenta, R. Conceição, Particle and Astroparticle Physics: Problems and Solutions (Springer, Cham, 2021)

    Book  Google Scholar 

  22. G. D’Amico, Statistical tools for imaging atmospheric Cherenkov telescopes. Universe 8(2), 90 (2022)

    Google Scholar 

  23. W.B. Atwood et al., The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009)

    Article  ADS  Google Scholar 

  24. M. Tavani et al., Science with e-ASTROGAM: a space mission for MeV–GeV gamma-ray astrophysics. J. High Energy Astrophys 19, 1–106 (2018)

    Article  ADS  Google Scholar 

  25. R. Caputo et al., All-sky medium energy gamma-ray observatory: exploring the extreme multimessenger universe (2019). https://arxiv.org/abs/1907.07558

  26. A.U. Abeysekara et al., Observation of the Crab Nebula with the HAWC gamma-ray observatory. Astrophys. J. 843(1), 39 (2017)

    Google Scholar 

  27. A. Addazi et al., The large high altitude air shower observatory (LHAASO) science book (2021 Edition). Chin. Phys. C 46, 035001–035007 (2022)

    Google Scholar 

  28. U. Jacob, T. Piran, Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astroparticle Phys. 1, 031 (2008)

    Article  ADS  Google Scholar 

  29. J. Bolmont et al., First combined study on lorentz invariance violation from observations of energy-dependent time delays from multiple-type gamma-ray sources. I. Motivation, method description, and validation through simulations of H.E.S.S., MAGIC, and VERITAS data sets. Astrophys. J. 930(1), 75 (2022)

    Google Scholar 

  30. K. Toma, S. Mukohyama, D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, Y. Morihara, T. Sakashita, T. Takahashi, Y. Wakashima, et al., Strict limit on CPT violation from polarization of gamma-ray burst. Phys. Rev. Lett. 109, 241104 (2012)

    Article  ADS  Google Scholar 

  31. O. Blanch, J. Lopez, M. Martinez, Testing the effective scale of quantum gravity with the next generation of gamma-ray telescopes. Astropart. Phys. 19, 245–252 (2003)

    Article  ADS  Google Scholar 

  32. H. Abdalla, M. Böttcher, Lorentz invariance violation effects on gamma–gamma absorption and compton scattering. Astrophys. J. 865(2), 159 (2018)

    Google Scholar 

  33. S.D. Biller et al., Limits to quantum gravity effects from observations of TeV flares in active galaxies. Phys. Rev. Lett. 83, 2108 (1999)

    Article  ADS  Google Scholar 

  34. J. Albert et al. [MAGIC and Other Contributors], Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 668, 253 (2008)

    Google Scholar 

  35. V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F.W. Stecker, J. Cohen-Tanugi, F. Longo, Constraints on Lorentz invariance violation from fermi-large area telescope observations of gamma-ray bursts. Phys. Rev. D 87(12), 122001 (2013)

    Google Scholar 

  36. U. Barres de Almeida, M.K. Daniel, A simple method to test for energy-dependent dispersion in high energy light-curves of astrophysical sources. Astropart. Phys. 35, 850 (2012)

    Article  ADS  Google Scholar 

  37. J.D. Scargle, J.P. Norris, J.T. Bonnell, An algorithm for detecting quantum-gravity photon dispersion in gamma-ray bursts: DISCAN. Astrophys. J. 673(2), 972 (2008)

    Google Scholar 

  38. J.R. Ellis, N. Harries, A. Meregaglia, A. Rubbia, A. Sakharov, Probes of Lorentz violation in neutrino propagation. Phys. Rev. D 78, 033013 (2008)

    Article  ADS  Google Scholar 

  39. J. Ellis, R. Konoplich, N.E. Mavromatos, L. Nguyen, A.S. Sakharov, E.K. Sarkisyan-Grinbaum, Robust constraint on lorentz violation using Fermi-LAT gamma-ray burst data. Phys. Rev. D 99(8), 083009 (2019)

    Google Scholar 

  40. T. Terzić, D. Kerszberg, J. Strišković, Probing quantum gravity with imaging atmospheric cherenkov telescopes. Universe 7, 345 (2021)

    Article  ADS  Google Scholar 

  41. M. Martinez, M. Errando, A new method to study energy-dependent arrival delays on photons from astrophysical sources. Astropart. Phys. 31, 226–232 (2009)

    Article  ADS  Google Scholar 

  42. V.A. Acciari et al., Bounds on lorentz invariance violation from MAGIC observation of GRB 190114C. Phys. Rev. Lett. 125, 021301 (2020)

    Article  ADS  Google Scholar 

  43. V.A. Acciari et al., Teraelectronvolt emission from the \(\gamma \)-ray burst GRB 190114C. Nature 575(7783), 455–458 (2019)

    Google Scholar 

  44. V.A. Acciari et al., Observation of inverse Compton emission from a long \(\gamma \)-ray burst. Nature 575(7783), 459–463 (2019)

    Google Scholar 

  45. Barlow, R.J., Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences. Manchester Physics Series (Wiley Blackwell, 1989)

    Google Scholar 

  46. S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9(1), 60–62 (1938)

    Article  MATH  Google Scholar 

  47. H. Abdalla et al., The 2014 TeV \(\gamma \)-ray flare of Mrk 501 seen with H.E.S.S.: temporal and spectral constraints on Lorentz invariance violation. Astrophys. J. 870, 93 (2019)

    Google Scholar 

  48. M. Ajello et al., [Fermi-LAT], The first Fermi LAT gamma-ray burst catalog. Astrophys. J. Suppl. 209, 11 (2013)

    Google Scholar 

  49. G. Castignani, D. Guetta, E. Pian, L. Amati, S. Puccetti, S. Dichiara, Time delays between Fermi-LAT and GBM light curves of gamma-ray bursts. Astron. Astrophys. 565, A60 (2014)

    Article  ADS  Google Scholar 

  50. A.S. Friedman et al., Improved constraints on anisotropic birefringent lorentz invariance and cpt violation from broadband optical polarimetry of high redshift galaxies. Phys. Rev. D 102, 043008 (2020)

    Article  ADS  Google Scholar 

  51. A. Franceschini, G. Rodighiero, M. Vaccari, Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 487, 837–852 (2008)

    Article  ADS  Google Scholar 

  52. T. Jacobson, S. Liberati, D. Mattingly, A strong astrophysical constraint on the violation of special relativity by quantum gravity. Nature 424, 1019–1021 (2003)

    Article  ADS  Google Scholar 

  53. G. Rubtsov, P. Satunin, S. Sibiryakov, Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. J. Cosmol. Astroparticle Phys. 5, 049 (2017)

    Article  ADS  Google Scholar 

  54. R.G. Lang, H. Martínez-Huerta, V. de Souza, Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 99(4), 043015 (2019)

    Google Scholar 

  55. G. Anton, Neutrino telescopes, in Probing Particle Physics with Neutrino Telescopes, ed. by P. de los Heros, chap. 2 (World Scientific Publishing, Singapore, 2020), pp. 11–32

    Google Scholar 

  56. M. Ahlers, K. Helbing, C. Pérez de los Heros, Probing particle physics with IceCube. Eur. Phys. J. C 78(11), 924 (2018)

    Google Scholar 

  57. A. Margiotta, Searches for exotica and dark matter with neutrino telescopes. Phil. Trans. Roy. Soc. Lond. A 377(2161), 20190084 (2019)

    Google Scholar 

  58. M. Ackermann et al., Fundamental physics with high-energy cosmic neutrinos. Bull. Am. Astron. Soc. 51, 215 (2019)

    Google Scholar 

  59. C. Pérez de los Heros (Ed.), Probing Particle Physics with Neutrino Telescopes (World Scientific Publishing, Singapore, 2020)

    Google Scholar 

  60. A. Achterberg et al., First year performance of the IceCube neutrino telescope. Astropart. Phys. 26, 155–173 (2006)

    Article  ADS  Google Scholar 

  61. S. Adrian-Martinez et al., Letter of intent for KM3NeT 2.0. J. Phys. G 43(8), 084001 (2016)

    Google Scholar 

  62. A. Avrorin et al., The Baikal neutrino experiment. Nucl. Instrum. Methods A 626–627, S13–S18 (2011)

    Article  Google Scholar 

  63. M. Agostini et al., The Pacific ocean neutrino experiment. Nat. Astron. 4(10), 913–915 (2020)

    Article  ADS  Google Scholar 

  64. M. Ageron et al., ANTARES: the first undersea neutrino telescope. Nucl. Instrum. Methods A 656, 11–38 (2011)

    Article  ADS  Google Scholar 

  65. Y. Fukuda et al., The super-kamiokande detector. Nucl. Instrum. Methods A 501, 418–462 (2003)

    Article  ADS  Google Scholar 

  66. A. Roberts, Astrophysical neutrinos in testing Lorentz symmetry.Galaxies 9(3), 47 (2021)

    Google Scholar 

  67. M.D.C. Torri, Neutrino oscillations and lorentz invariance violation. Universe 6(3), 37 (2020)

    Google Scholar 

  68. F.W. Stecker, Testing Lorentz symmetry using high energy astrophysics observations. Symmetry 9(10), 201 (2017)

    Google Scholar 

  69. F.W. Stecker, S.T. Scully, S. Liberati, D. Mattingly, Searching for traces of planck-scale physics with high energy neutrinos. Phys. Rev. D 91(4), 045009 (2015)

    Google Scholar 

  70. T. Pitik, I. Tamborra, M. Petropoulou, Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astroparticle Phys. 5, 034 (2021)

    Article  ADS  Google Scholar 

  71. T. Piran, Gamma-ray bursts and the fireball model.Phys. Rep. 314, 575–667 (1999)

    Article  ADS  Google Scholar 

  72. B. Zhang, P. Meszaros, Gamma-ray bursts: progress, problems & prospects. Int. J. Mod. Phys. A 19, 2385–2472 (2004)

    Article  ADS  Google Scholar 

  73. R. Abbasi et al., Searches for neutrinos from precursors and afterglows of gamma-ray bursts using the IceCube neutrino observatory. PoS ICRC2021, 1118 (2021)

    Google Scholar 

  74. U. Jacob, T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nat. Phys. 3, 87–90 (2007)

    Article  Google Scholar 

  75. G. Amelino-Camelia, D. Guetta, T. Piran, Icecube neutrinos and Lorentz invariance violation. Astrophys. J. 806(2), 269 (2015)

    Google Scholar 

  76. W. Hillebrandt, P. Hoflich, The supernova SN1987A in the large magellanic cloud. Rep. Prog. Phys. 52, 1421–1473 (1989)

    Article  ADS  Google Scholar 

  77. M.G. Aartsen et al., Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361(6398), eaat1378 (2018)

    Google Scholar 

  78. K.S. Hirata et al., Observation in the Kamiokande-II detector of the neutrino burst from supernova SN 1987a. Phys. Rev. D 38, 448–458 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  79. T. Haines et al., Neutrinos from SN1987A in the IMB detector. Nucl. Instrum. Meth. A 264, 28–31 (1988)

    Article  ADS  Google Scholar 

  80. E.N. Alekseev, L.N. Alekseeva, I.V. Krivosheina, V.I. Volchenko, Detection of the neutrino signal from SN1987A in the LMC using the InrBaksan underground scintillation telescope. Phys. Lett. B 205,209–214 (1988)

    Article  ADS  Google Scholar 

  81. M. Aglietta et al., On the event observed in the Mont Blanc underground neutrino observatory during the occurrence of Supernova 1987a. Europhys. Lett. 3, 1315–1320 (1987)

    Article  ADS  Google Scholar 

  82. H.T. Janka, Neutrino emission from supernovae, in Handbook of Supernovae, ed. by A. Alsabti, P. Murdin (Springer, Berlin, 2017)

    Google Scholar 

  83. P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam. Phys. Rev. D 76, 072005 (2007)

    Article  ADS  Google Scholar 

  84. S. Garrappa et al., Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube. Astrophys. J. 880(2), 880:103 (2019)

    Google Scholar 

  85. J. Ellis, N.E. Mavromatos, A.S. Sakharov, E.K. Sarkisyan-Grinbaum, Limits on neutrino lorentz violation from multimessenger observations of TXS 0506+056. Phys. Lett. B 789, 352–355 (2019)

    Article  ADS  Google Scholar 

  86. K. Wang, S.Q. Xi, L. Shao, R.Y. Liu, Z. Li, Z.K. Zhang, Limiting superluminal neutrino velocity and lorentz invariance violation by neutrino emission from the blazar TXS 0506+056. Phys. Rev. D 102(6), 063027 (2020)

    Google Scholar 

  87. L. Köpke, Improved detection of supernovae with the IceCube observatory. J. Phys. Conf. Ser. 1029(1), 012001 (2018)

    Google Scholar 

  88. T. Jacobson, S. Liberati, D. Mattingly, Threshold effects and planck scale lorentz violation: combined constraints from high-energy astrophysics. Phys. Rev. D 67, 124011 (2003)

    Article  ADS  Google Scholar 

  89. M. Ackermann et al., Unresolved gamma-ray sky through its angular power spectrum. Phys. Rev. Lett. 121(24), 241101 (2018)

    Google Scholar 

  90. G. Somogyi, I. Nándori, U.D. Jentschura, Neutrino splitting for lorentz-violating neutrinos: detailed analysis. Phys. Rev. D 100(3), 035036 (2019)

    Google Scholar 

  91. J. Christian, Testing quantum gravity via cosmogenic neutrino oscillations. Phys. Rev. D 71, 024012 (2005)

    Article  ADS  Google Scholar 

  92. D.M. Mattingly, L. Maccione, M. Galaverni, S. Liberati, G. Sigl, Possible cosmogenic neutrino constraints on planck-scale Lorentz violation. J. Cosmol. Astroparticle Phys. 2, 007 (2010)

    Article  ADS  Google Scholar 

  93. E. Borriello, S. Chakraborty, A. Mirizzi, P.D. Serpico, Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos. Phys. Rev. D 87(11), 116009 (2013)

    Google Scholar 

  94. F.W. Stecker, S.T. Scully, Propagation of superluminal PeV IceCube neutrinos: a high energy spectral cutoff or new constraints on Lorentz invariance violation. Phys. Rev. D 90(4), 043012 (2014)

    Google Scholar 

  95. G. Tomar, S. Mohanty, S. Pakvasa, Lorentz invariance violation and IceCube neutrino events. J. High Energy Phys. 11, 022 (2015)

    Article  ADS  Google Scholar 

  96. J.S. Diaz, A. Kostelecky, M. Mewes, Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D 89(4), 043005 (2014)

    Google Scholar 

  97. T.K. Gaisser, Atmospheric neutrinos, in Probing Particle Physics with Neutrino Telescopes, ed. by P. de los Heros, chap. 3 (World Scientific Publishing, Singapore, 2020), pp. 33–74

    Google Scholar 

  98. R. Abbasi et al., The IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Phys. Rev. D 104, 022002 (2021)

    Google Scholar 

  99. G. Fantini, A. Gallo Rosso, F. Vissani, V. Zema, Introduction to the formalism of neutrino oscillations. Adv. Ser. Direct. High Energy Phys. 28, 37–119 (2018)

    Article  MATH  Google Scholar 

  100. D. Morgan, E. Winstanley, L.F. Thompson, J. Brunner, L.F. Thompson, Neutrino telescope modelling of Lorentz invariance violation in oscillations of atmospheric neutrinos. Astropart. Phys. 29, 345–354 (2008)

    Article  ADS  Google Scholar 

  101. K. Abe et al., Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91(5), 052003 (2015)

    Google Scholar 

  102. G.L. Fogli, E. Lisi, A. Marrone, G. Scioscia, Testing violations of special and general relativity through the energy dependence of muon-neutrino \({<}\)-\({>}\) tau-neutrino oscillations in the Super-Kamiokande atmospheric neutrino experiment. Phys. Rev. D 60, 053006 (1999)

    Google Scholar 

  103. M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018)

    Article  Google Scholar 

  104. R. Abbasi et al., Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 82, 112003 (2010)

    Article  ADS  Google Scholar 

  105. A.A. Aguilar-Arevalo et al., Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses. Phys. Lett. B 718, 1303–1308 (2013)

    Article  ADS  Google Scholar 

  106. K. Abe et al., Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline. Phys. Rev. D 95(11), 111101 (2017)

    Google Scholar 

  107. P. Adamson et al., Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS near detector. Phys. Rev. D 85, 031101 (2012)

    Article  ADS  Google Scholar 

  108. B. Aharmim et al., Tests of Lorentz invariance at the sudbury neutrino observatory. Phys. Rev. D 98(11), 112013 (2018)

    Google Scholar 

  109. S. Hummer, M. Maltoni, W. Winter, C. Yaguna, Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot. Astropart. Phys. 34, 205–224 (2010)

    Article  ADS  Google Scholar 

  110. M. Bustamante, M. Ahlers, Inferring the flavor of high-energy astrophysical neutrinos at their sources. Phys. Rev. Lett. 122(24), 241101 (2019)

    Google Scholar 

  111. C.A. Argüelles, T. Katori, J. Salvado, New physics in astrophysical neutrino flavor. Phys. Rev. Lett. 115, 161303 (2015)

    Article  ADS  Google Scholar 

  112. N. Song, S.W. Li, C.A. Argüelles, M. Bustamante, A.C. Vincent, The future of high-energy astrophysical neutrino flavor measurements. J. Cosmol. Astroparticle Phys. 4, 054 (2021)

    Article  ADS  Google Scholar 

  113. M.G. Aartsen et al., A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 809(1), 98 (2015)

    Google Scholar 

  114. M. Boezio, R. Munini, P. Picozza, Cosmic ray detection in space. Prog. Part. Nucl. Phys. 112, 103765 (2020)

    Article  Google Scholar 

  115. R. Battiston, Spaceborne experiments, in Particle Physics Reference Library. Volume 2: Detectors for Particles and Radiation, ed. by C.W. Fabjan, H. Schopper (Springer, Berlin, 2020), pp. 823–870

    Google Scholar 

  116. T.K. Gaisser, Cosmic-ray showers reveal muon mystery. Physics 9, 125 (2016)

    Article  Google Scholar 

  117. A. Aab et al., The pierre auger cosmic ray observatory. Nucl. Instrum. Meth. A 798, 172–213 (2015)

    Article  Google Scholar 

  118. X.H. Ma et al., Chapter 1 LHAASO instruments and detector technology*. Chin. Phys. C 46(1), 030001 (2022)

    Google Scholar 

  119. H. Kawai et al., Telescope array experiment. Nucl. Phys. B Proc. Suppl. 175–176, 221–226 (2008)

    Article  ADS  Google Scholar 

  120. R. Alves Batista, E.M. de Gouveia Dal Pino, K. Dolag, S. Hussain, Cosmic-ray propagation in the turbulent intergalactic medium, in 30th General Assembly of the International Astronomical Union (2018)

    Google Scholar 

  121. R. Cowsik, B.V. Sreekantan, A bound on violations of Lorentz invariance. Phys. Lett. B 449, 219–222 (1999)

    Article  ADS  Google Scholar 

  122. R. Cowsik, T. Madziwa-Nussinov, S. Nussinov, U. Sarkar, Testing violations of Lorentz invariance with cosmic-rays. Phys. Rev. D 86, 045024 (2012)

    Article  ADS  Google Scholar 

  123. S.T. Scully, F.W. Stecker, Lorentz invariance violation and the observed spectrum of ultrahigh energy cosmic rays. Astropart. Phys. 31, 220 (2009)

    Article  ADS  Google Scholar 

  124. R.U. Abbasi et al., First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100, 101101 (2008)

    Article  ADS  Google Scholar 

  125. J. Abraham et al., Observation of the suppression of the flux of cosmic rays above \(4\times 10^{19}\)eV. Phys. Rev. Lett. 101, 061101 (2008)

    Google Scholar 

  126. S.R. Coleman, S.L. Glashow, Cosmic ray and neutrino tests of special relativity. Phys. Lett. B 405, 249–252 (1997)

    Article  ADS  Google Scholar 

  127. D. Mattingly, Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005)

    Article  MATH  Google Scholar 

  128. H. Martínez-Huerta, A. Pérez-Lorenzana, Restrictions from Lorentz invariance violation on cosmic ray propagation. Phys. Rev. D 95(6), 063001 (2017)

    Google Scholar 

  129. P. Abreu et al., Testing effects of Lorentz invariance violation in the propagation of astroparticles with the pierre auger observatory. J. Cosmol. Astropart. Phys. 1(1), 023 (2022)

    Google Scholar 

  130. V.A. Kostelecký, J.D. Tasson, Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 749, 551–559 (2015)

    Article  ADS  Google Scholar 

  131. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Google Scholar 

  132. F. Acernese et al., Virgo detector characterization and data quality during the O3 run. (2022). https://arxiv.org/abs/2210.15633

  133. M. Mewes, Signals for Lorentz violation in gravitational waves. Phys. Rev. D 99(10), 104062 (2019)

    Google Scholar 

  134. V.A. Kostelecký, M. Mewes, Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 757, 510–514 (2016)

    Article  ADS  MATH  Google Scholar 

  135. B.P. Abbott et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys. Rev. X 9(3), 031040 (2019)

    Google Scholar 

  136. B.P. Abbott et al., Tests of general relativity with the binary black hole signals from the LIGO-virgo catalog GWTC-1. Phys. Rev. D 100(10), 104036 (2019)

    Google Scholar 

  137. B.P. Abbott et al., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118(22), 221101 (2017). [Erratum: Phys.Rev.Lett. 121, 129901 (2018)]

    Google Scholar 

  138. P.D. Lasky, Gravitational waves from neutron stars: a review. Publ. Astron. Soc. Austral. 32, e034 (2015)

    Article  ADS  Google Scholar 

  139. M. Zimmermann, Gravitational waves from rotating and precessing rigid bodies. 1. General solutions and computationally useful formulas. Phys. Rev. D 21, 891–898 (1980)

    Google Scholar 

  140. R. Xu, Y. Gao, L. Shao, Precession of spheroids under Lorentz violation and observational consequences for neutron stars. Phys. Rev. D 103(8), 084028 (2021)

    Google Scholar 

  141. B.P. Abbott et al., First search for gravitational waves from known pulsars with Advanced LIGO. Astrophys. J. 839(1), 12 (2017). [Erratum: Astrophys.J. 851, 71 (2017)]

    Google Scholar 

  142. S. Di Pace et al., Research facilities for Europe’s next generation gravitational-wave detector einstein telescope. Galaxies 10(3), 65 (2022)

    Google Scholar 

  143. P. Amaro-Seoane et al., Low-frequency gravitational-wave science with eLISA/NGO. Class. Quant. Grav. 29, 124016 (2012)

    Article  ADS  Google Scholar 

  144. S.E. Perkins, N. Yunes, E. Berti, Probing fundamental physics with gravitational waves: the next generation. Phys. Rev. D 103(4), 044024 (2021)

    Google Scholar 

  145. COST Action 18108, QG-mm catalogue (2021). https://qg-mm.unizar.es/wiki

  146. H. Abdalla, et al., Sensitivity of the Cherenkov telescope array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmol. Astropart. Phys. 02, 048 (2021)

    Article  ADS  Google Scholar 

  147. M. Fairbairn, A. Nilsson, J. Ellis, J. Hinton, R. White, The CTA sensitivity to Lorentz-violating effects on the gamma-ray horizon. J. Cosmol. Astropart. Phys. 06, 005 (2014)

    Article  ADS  Google Scholar 

  148. F.W. Stecker, Testing Lorentz invariance with neutrinos, in ’Neutrino Physics and Astrophysics’, “Encyclopedia of Cosmology Series II”, ed. by G.G. Fazio (World Scientific Publishing Company, Singapore, 2022)

    Google Scholar 

  149. W. Bietenholz, Cosmic rays and the search for a Lorentz invariance violation. Phys. Rep. 505, 145–185 (2011)

    Article  ADS  Google Scholar 

  150. C.M. Will, The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4, (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Pérez de los Heros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heros, C.P.d.l., Terzić, T. (2023). Cosmic Searches for Lorentz Invariance Violation. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_6

Download citation

Publish with us

Policies and ethics