Skip to main content

Testing Gravity and Predictions Beyond the Standard Model at Short Distances: The Casimir Effect

  • Chapter
  • First Online:
Modified and Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 1017))

  • 564 Accesses

Abstract

The Standard Model of elementary particles and their interactions does not include the gravitational interaction and faces problems in understanding dark matter, dark energy, strong CP violation etc. To solve these problems, many predictions of new light elementary particles and hypothetical interactions have been made. These predictions can be constrained by many means including measuring the Casimir force caused by the zero-point and thermal fluctuations. After discussing the theory of the Casimir effect, the strongest constraints on the power-type and Yukawa-type corrections to Newtonian gravity, following from measuring the Casimir force are considered. Next, the problems of dark matter, dark energy and their probable constituents are discussed. This is followed by an analysis of constraints on the dark matter particles, including axions and axion-like particles, obtained from the Casimir effect. The question of whether the Casimir effect can be used for constraining the spin-dependent interactions is considered. Then the constraints on the dark energy particles, like chameleons and symmetrons, are examined. In all cases we discuss not only measurements of the Casimir force but some other relevant table-top experiments as well. In conclusion, the prospects of the Casimir effect for constraining theoretical predictions beyond the Standard Model are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 2010)

    MATH  Google Scholar 

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)

    MATH  Google Scholar 

  4. R.P. Feynman, Quantum Electrodynamics (Westview Press, Boulder, 1998)

    Google Scholar 

  5. P. Renton, Electroweak Interactions. An Introduction to the Physics of Quarks and Leptons (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  6. W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics (Springer, Berlin, 2007)

    MATH  Google Scholar 

  7. C. Burgess, G. Moore, The Standard Model (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  8. J. Wess, J. Bagger, Supersymmetry and Supergravity (Prinston University Press, Prinston, 1992)

    MATH  Google Scholar 

  9. B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  10. H.B.G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 51, 793–795 (1948)

    MATH  Google Scholar 

  11. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect. (Oxford University Press, Oxford, 2015)

    Google Scholar 

  12. A. Erdélyi, W. Magnus, F.G. Oberhettinger, Higher Transcendental Functions, vol. 1 (Kriger, New York, 1981)

    MATH  Google Scholar 

  13. E.M. Lifshitz, The theory of molecular attractive forces between solids. Zh. Eksp. Teor. Fiz. 29, 94–110 (1955); Sov. Phys. JETP 2, 73–83 (1956)

    Google Scholar 

  14. P. Richmond, B.W. Ninham, A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media. J. Phys. C: Solid State Phys. 4, 1988–1993 (1971)

    Article  ADS  Google Scholar 

  15. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827–1885 (2009)

    Article  ADS  Google Scholar 

  16. A. Canaguier-Durand, P.A. Maia Neto, I. Cavero-Pelaez, A. Lambrecht, S. Reynaud, Casimir interaction between plane and spherical metallic surfaces. Phys. Rev. Lett. 102, 230404 (2009)

    Article  ADS  Google Scholar 

  17. M. Hartmann, G.-L. Ingold, P.A. Maia Neto, Plasma versus drude modeling of the casimir force: beyond the proximity force approximation. Phys. Rev. Lett. 119, 043901 (2017)

    Article  ADS  Google Scholar 

  18. B. Spreng, M. Hartmann, V. Henning, P.A. Maia Neto, G.-L. Ingold, Proximity force approximation and specular reflection: application of the WKB limit of Mie scattering to the Casimir effect. Phys. Rev. A 97, 062504 (2018)

    Article  ADS  Google Scholar 

  19. M. Hartmann, G.-L. Ingold, P.A. Maia Neto, Advancing numerics for the Casimir effect to experimentally relevant aspect ratios. Phys. Scr. 93, 114003 (2018)

    Article  ADS  Google Scholar 

  20. C.D. Fosco, F.C. Lombardo, F.D. Mazzitelli, Proximity force approximation for the Casimir energy as a derivative expansion. Phys. Rev. D 84, 105031 (2011)

    Article  ADS  Google Scholar 

  21. G. Bimonte, T. Emig, R.L. Jaffe, M. Kardar, Casimir forces beyond the proximity force approximation. Europhys. Lett. 97, 50001 (2012)

    Article  ADS  Google Scholar 

  22. G. Bimonte, T. Emig, M. Kardar, Material dependence of Casimir force: gradient expansion beyond proximity. Appl. Phys. Lett. 100, 074110 (2012)

    Article  ADS  Google Scholar 

  23. L.P. Teo, Material dependence of Casimir interaction between a sphere and a plate: first analytic correction beyond proximity force approximation. Phys. Rev. D 88, 045019 (2013)

    Article  ADS  Google Scholar 

  24. G. Bimonte: Going beyond PFA: a precise formula for the sphere-plate Casimir force. Europhys. Lett. 118, 20002 (2017)

    Article  ADS  Google Scholar 

  25. R.S. Decca, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, D. L’opez, V.M. Mostepanenko, Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements. Phys. Rev. D 68, 116003 (2003)

    Article  ADS  Google Scholar 

  26. R.S. Decca, D. L’opez, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. (N.Y.) 318, 37–80 (2005)

    Google Scholar 

  27. R.S. Decca, D. L’opez, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 077101 (2007)

    Article  ADS  Google Scholar 

  28. R.S. Decca, D. L’opez, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect. Eur. Phys. J. C 51, 963–975 (2007)

    Article  ADS  Google Scholar 

  29. C.-C. Chang, A.A. Banishev, R. Castillo-Garza, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Phys. Rev. B 85, 165443 (2012)

    Article  ADS  Google Scholar 

  30. J. Xu, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices. Phys. Rev. A 97, 032501 (2018)

    Article  ADS  Google Scholar 

  31. M. Liu, J. Xu, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Examining the Casimir puzzle with an upgraded AFM-based technique and advanced surface cleaning. Phys. Rev. B 100, 081406(R) (2019)

    Google Scholar 

  32. M. Liu, J. Xu, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Phys. Rev. A 100, 052511 (2019)

    Article  ADS  Google Scholar 

  33. G. Bimonte, B. Spreng, P.A. Maia Neto, G.-L. Ingold, G.L. Klimchitskaya, V.M. Mostepanenko, R.S. Decca, Measurement of the Casimir Force between 0.2 and \(8~\mu \)m: experimental Procedures and Comparison with Theory. Universe 7, 93 (2021)

    Google Scholar 

  34. A.A. Banishev, C.-C. Chang, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Measurement of the gradient of the Casimir force between a nonmagnetic gold sphere and a magnetic nickel plate. Phys. Rev. B 85, 195422 (2012)

    Article  ADS  Google Scholar 

  35. A.A. Banishev, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Demonstration of the Casimir force between ferromagnetic surfaces of a ni-coated sphere and a ni-coated plate. Phys. Rev. Lett. 110, 137401 (2013)

    Article  ADS  Google Scholar 

  36. A.A. Banishev, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies. Phys. Rev. B 88, 155410 (2013)

    Article  ADS  Google Scholar 

  37. G. Bimonte, D. L’opez, R.S. Decca, Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 93, 184434 (2016)

    Article  ADS  Google Scholar 

  38. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Violation of the Nernst heat theorem in the theory of thermal Casimir force between Drude metals. Phys. Rev. A 69, 022119 (2004)

    Article  ADS  Google Scholar 

  39. M. Bordag, I. Pirozhenko, Casimir entropy for a ball in front of a plane. Phys. Rev. D 82, 125016 (2010)

    Article  ADS  Google Scholar 

  40. G.L. Klimchitskaya, V.M. Mostepanenko, Low-temperature behavior of the Casimir free energy and entropy of metallic films. Phys. Rev. A 95, 012130 (2017)

    Article  ADS  Google Scholar 

  41. G.L. Klimchitskaya, C.C. Korikov, Analytic results for the Casimir free energy between ferromagnetic metals. Phys. Rev. A 91, 032119 (2015)

    Article  ADS  Google Scholar 

  42. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  43. M. Bordag, G.L. Klimchitskaya, V.M. Mostepanenko, V.M. Petrov, Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D 91, 045037 (2015); Erratum in 93, 089907 (2016)

    Google Scholar 

  44. M. Bordag, I. Fialkovskiy, D. Vassilevich, Enhanced Casimir effect for doped graphene. Phys. Rev. B 93, 075414 (2016); Erratum in 95, 119905 (2017)

    Google Scholar 

  45. G.L. Klimchitskaya, V.M. Mostepanenko, Bo E. Sernelius, Two approaches for describing the Casimir interaction with graphene: Density-density correlation function versus polarization tensor. Phys. Rev. B 89, 125407 (2014)

    Google Scholar 

  46. G.L. Klimchitskaya, V.M. Mostepanenko, Conductivity of pure graphene: theoretical approach using the polarization tensor. Phys. Rev. B 93, 245419 (2016)

    Article  ADS  Google Scholar 

  47. A.A. Banishev, H. Wen, J. Xu, R.K. Kawakami, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Measuring the Casimir force gradient from graphene on a SiO\(_2\) substrate. Phys. Rev. B 87, 205433 (2013)

    Google Scholar 

  48. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Theory of the Casimir interaction for graphene-coated substrates using the polarization tensor and comparison with experiment. Phys. Rev. B 89, 115419 (2014)

    Article  ADS  Google Scholar 

  49. M. Liu, Y. Zhang, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Demonstration of an unusual thermal effect in the casimir force from graphene. Phys. Rev. Lett. 126, 206802 (2021)

    Article  ADS  Google Scholar 

  50. M. Liu, Y. Zhang, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene. Phys. Rev. B 104, 085436 (2021)

    Article  ADS  Google Scholar 

  51. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Nernst heat theorem for the thermal Casimir interaction between two graphene sheets. Phys. Rev. A 94, 042501 (2016)

    Article  ADS  Google Scholar 

  52. G.L. Klimchitskaya, V.M. Mostepanenko, Low-temperature behavior of the Casimir-Polder free energy and entropy for an atom interacting with graphene. Phys. Rev. A 98, 032506 (2018)

    Article  ADS  Google Scholar 

  53. G.L. Klimchitskaya, V.M. Mostepanenko, Nernst heat theorem for an atom interacting with graphene: Dirac model with nonzero energy gap and chemical potential. Phys. Rev. D 101, 116003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  54. G.L. Klimchitskaya, V.M. Mostepanenko, Quantum field theoretical description of the Casimir effect between two real graphene sheets and thermodynamics. Phys. Rev. D 102, 016006 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. G.L. Klimchitskaya, V.M. Mostepanenko, Casimir and Casimir-Polder forces in graphene systems: quantum field theoretical description and thermodynamics. Universe 6, 150 (2020)

    Article  Google Scholar 

  56. G.L. Klimchitskaya, V.M. Mostepanenko, An alternative response to the off-shell quantum fluctuations: a step forward in resolution of the Casimir puzzle. Eur. Phys. J. C 80, 900 (2020)

    Article  ADS  Google Scholar 

  57. G.L. Klimchitskaya, V.M. Mostepanenko, Theory-experiment comparison for the Casimir force between metallic test bodies: a spatially nonlocal dielectric response. Phys. Rev. A 105, 012805 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  58. G.L. Klimchitskaya, V.M. Mostepanenko, Casimir entropy and nonlocal response functions to the off-shell quantum fluctuations. Phys. Rev. D 103, 096007 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  59. G.L. Klimchitskaya, V.M. Mostepanenko, Casimir effect for magnetic media: Spatially nonlocal response to the off-shell quantum fluctuations. Phys. Rev. D 104, 085001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  60. V.M. Mostepanenko: Casimir puzzle and casimir conundrum: discovery and search for resolution. Universe 7, 84 (2021)

    Article  ADS  Google Scholar 

  61. A.A. Anselm, N.G. Uraltsev, A second massless axion? Phys. Lett. B 114, 39–41 (1982)

    Article  ADS  Google Scholar 

  62. V.M. Mostepanenko, I.Y. Sokolov, Restrictions on long-range forces following from the Casimir effect. Yadern. Fiz. 46, 1174–1180 (1987); Sov. J. Nucl. Phys. 46, 685–688 (1987)

    Google Scholar 

  63. G. Feinberg, J. Sucher, Long-range forces from neutrino-pair exchange. Phys. Rev. 166, 1638–1644 (1968)

    Article  ADS  Google Scholar 

  64. E. Fischbach, Long-range forces and neutrino mass. Ann. Phys. (N.Y.) 247, 213–291 (1996)

    Google Scholar 

  65. S. Deser, B. Zumino, Broken Supersymmetry and Supergravity. Phys. Rev. Lett. 38, 1433–1436 (1977)

    Article  ADS  Google Scholar 

  66. L. Randall, R. Sundrum, Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. L. Randall, R. Sundrum, An Alternative to Compactification. Phys. Rev. Lett. 83, 4690–4693 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. J.H. Gundlach, G.L. Smith, E.G. Adelberger, B.R. Heckel, H.E. Swanson, Short-range test of the equivalence principle. Phys. Rev. Lett. 78, 2523–2526 (1997)

    Article  ADS  Google Scholar 

  69. G.L. Smith, C.D. Hoyle, J.H. Gundlach, E.G. Adelberger, B.R. Heckel, H.E. Swanson, Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001 (2000)

    Article  ADS  Google Scholar 

  70. D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D. Hoyle, H.E. Swanson, Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007)

    Article  ADS  Google Scholar 

  71. E.G. Adelberger, B.R. Heckel, S. Hoedl, C.D. Hoyle, D.J. Kapner, A. Upadhye, Particle-physics implications of a recent test of the gravitational inverse-square law. Phys. Rev. Lett. 98, 131104 (2007)

    Article  ADS  Google Scholar 

  72. V.M. Mostepanenko, I.Y. Sokolov, The Casimir effect leads to new restrictions on long-range force constants. Phys. Lett. A 125, 405–408 (1987)

    Article  ADS  Google Scholar 

  73. B.V. Derjaguin, I.I. Abrikosova, E.M. Lifshitz, Direct measurement of molecular attraction between solids separated by a narrow gap. Quat. Rev. 10, 295–329 (1956)

    Google Scholar 

  74. G. Feinberg, J. Sucher, Is there a strong van der Waals between hadrons? Phys. Rev. D 20, 1717–1724 (1979)

    Article  ADS  Google Scholar 

  75. W.-H. Tan, A.-B. Du, W.-C. Dong, S.-Q. Yang, C.-G. Shao, S.-G. Guan, Q.-L. Wang, B.-F. Zhan, P.-S. Luo, L.-C. Tu, J. Luo, Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev. Lett. 124, 051301 (2020)

    Article  ADS  Google Scholar 

  76. S. Dimopoulos, G.F. Guidice, Macroscopic forces from supersymmetry. Phys. Lett. B 379, 105–114 (1996)

    Article  ADS  Google Scholar 

  77. Y. Fujii, The theoretical background of the fifth force. Int. J. Mod. Phys. A 6, 3505–3557 (1991)

    Article  ADS  Google Scholar 

  78. R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1143 (1977)

    Article  ADS  Google Scholar 

  79. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998)

    Article  ADS  MATH  Google Scholar 

  80. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics, and cosmology of theories with millimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999)

    Article  ADS  Google Scholar 

  81. E.G. Floratos, G.K. Leontaris, Low scale unification, Newton’s law and extra dimensions. Phys. Lett. B 465, 95–100 (1999)

    MATH  Google Scholar 

  82. A. Kehagias, K. Sfetsos, Deviations from \(1/r^2\) Newton law due to extra dimensions. Phys. Lett. B 472, 39–44 (2000)

    Google Scholar 

  83. E. Fischbach, C.L. Talmadge, The Search for Non-Newtonian Gravity (Springer-Verlag, New York, 1999)

    Book  MATH  Google Scholar 

  84. S.J. Smullin, A.A. Geraci, D.M. Weld, J. Chiaverini, S. Holmes, A. Kapitulnik, Constraints on Yukawa-type deviations from Newtonian gravity at 20 microns. Phys. Rev. D 72, 122001 (2005)

    Article  ADS  Google Scholar 

  85. J.K. Hoskins, R.D. Newman, R. Spero, J. Schultz, Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Phys. Rev. D 32, 3084–3095 (1985)

    Article  ADS  Google Scholar 

  86. S. Schlamminger, K.-J. Choi, T.A. Wagner, J.H. Gundlach, E.G. Adelberger, Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)

    Article  ADS  Google Scholar 

  87. V.A. Kuzmin, I.I. Tkachev, M.E. Kaposhnikov, Restrictions imposed on light scalar particles by measurements of van der Waals forces. Pis’ma v Zh. Eksp. Teor. Fiz. 36, 49–52 (1982); JETP Lett. 36, 59–62 (1982)

    Google Scholar 

  88. D. Tabor, R.H.S. Winterton, Surface forces: direct measurement of normal and retarded van der Waals forces. Nature 219, 1120–1121 (1968)

    Article  ADS  Google Scholar 

  89. R.S. Decca, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, D. L’opez, V.M. Mostepanenko, Application of the proximity force approximation to gravitational and Yukawa-type forces. Phys. Rev. D 79, 124021 (2009)

    Article  ADS  Google Scholar 

  90. H.C. Chiu, G.L. Klimchitskaya, V.N. Marachevsky, V.M. Mostepanenko, U. Mohideen, Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in the nonadditive regime. Phys. Rev. B 80, 121402(R) (2009)

    Google Scholar 

  91. H.C. Chiu, G.L. Klimchitskaya, V.N. Marachevsky, V.M. Mostepanenko, U. Mohideen, Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 81, 115417 (2010)

    Article  ADS  Google Scholar 

  92. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Advance and prospects in constraining the Yukawa-type corrections to Newtonian gravity from the Casimir effect. Phys. Rev. D 81, 055003 (2010)

    Article  ADS  Google Scholar 

  93. A.A. Banishev, J. Wagner, T. Emig, R. Zandi, U. Mohideen, Demonstration of Angle-Dependent Casimir Force between Corrugations. Phys. Rev. Lett. 110, 250403 (2013)

    Article  ADS  Google Scholar 

  94. A.A. Banishev, J. Wagner, T. Emig, R. Zandi, U. Mohideen, Experimental and theoretical investigation of the angular dependence of the Casimir force between sinusoidally corrugated surfaces. Phys. Rev. B 89, 235436 (2014)

    Article  ADS  Google Scholar 

  95. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. Phys. Rev. D 87, 125031 (2013)

    Article  ADS  Google Scholar 

  96. Y.J. Chen, W.K. Tham, D.E. Krause, D. L’opez, E. Fischbach, R.S. Decca, Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range. Phys. Rev. Lett. 116, 221102 (2016)

    Article  ADS  Google Scholar 

  97. V.V. Nesvizhevsky, G. Pignol, K.V. Protasov, Neutron scattering and extra short range interactions. Phys. Rev. D 77, 034020 (2008)

    Article  ADS  Google Scholar 

  98. Y. Kamiya, K. Itagami, M. Tani, G.N. Kim, S. Komamiya, Constraints on new gravitylike forces in the nanometer range. Phys. Rev. Lett. 114, 161101 (2015)

    Article  ADS  Google Scholar 

  99. C.C. Haddock, N. Oi, K. Hirota, T. Ino, M. Kitaguchi, S. Matsumoto, K. Mishima, T. Shima, H.M. Shimizu, W.M. Snow, T. Yoshioka, Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam. Phys. Rev. D 97, 062002 (2018)

    Article  ADS  Google Scholar 

  100. V.M. Mostepanenko, M. Novello, Constraints on non-Newtonian gravity from the Casimir force measurements between two crossed cylinder. Phys. Rev. D 63, 115003 (2001)

    Article  ADS  Google Scholar 

  101. M. Masuda, M. Sasaki, limits on nonstandard forces in the submicrometer range. Phys. Rev. Lett. 102, 171101 (2009)

    Google Scholar 

  102. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Constraints on non-Newtonian gravity and light elementary particles from measurements of the Casimir force by means of a dynamic atomic microscope. Phys. Rev. D 86, 065025 (2012)

    Article  ADS  Google Scholar 

  103. G.L. Klimchitskaya, P. Kuusk, V.M. Mostepanenko, Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. D 101, 056013 (2020)

    Article  ADS  Google Scholar 

  104. G.L. Klimchitskaya, V.M. Mostepanenko, Dark matter axions, non-newtonian gravity and constraints on them from recent measurements of the Casimir force in the micrometer separation range. Universe 7, 343 (2021)

    Article  ADS  Google Scholar 

  105. S.G. Karshenboim, Constraints on a long-range spin-independent interaction from precision atomic physics. Phys. Rev. D 82, 073003 (2010)

    Article  ADS  Google Scholar 

  106. J.H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Inst. Neth. 6, 249–287 (1932)

    ADS  MATH  Google Scholar 

  107. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  108. G. Bertone, D. Hooper, Hystory of dark matter. Rev. Mod. Phys. 90, 045002 (2018)

    Article  ADS  Google Scholar 

  109. J.M. Overduin, P.S. Wesson, Dark matter and background light. Phys. Rep. 402, 267–406 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  110. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    Article  ADS  Google Scholar 

  111. R.H. Sanders, The Dark Matter Problem: A Historical Perspective (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  112. S. Matarrese, M. Colpi, V. Gorini, U. Moshella (eds.), Dark Matter and Dark Energy (Springer, Dordrecht, 2011)

    MATH  Google Scholar 

  113. S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223–226 (1978)

    Article  ADS  Google Scholar 

  114. F. Wilczek, Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–283 (1978)

    Article  ADS  Google Scholar 

  115. J.E. Kim, Light pseudoscalars, particle physics and cosmology. Phys. Rep. 150, 1–177 (1987)

    Article  ADS  Google Scholar 

  116. E.G. Adelberger, B.R. Heckel, C.W. Stubbs, W.F. Rogers, Searches for new macroscopic forces. Annu. Rev. Nucl. Part. Sci. 41, 269–320 (1991)

    Article  ADS  Google Scholar 

  117. L.J. Rosenberg, K.A. van Bibber, Searches for invisible axions. Phys. Rep. 325, 1–39 (2000)

    Article  ADS  Google Scholar 

  118. G.G. Raffelt, Axions—motivation, limits and searches. J. Phys. A Math. Theor. 40, 6607–6620 (2007)

    Article  ADS  MATH  Google Scholar 

  119. M. Kawasaki, K. Nakayama, Axions: theory and cosmological role. Annu. Rev. Nucl. Part. Sci. 63, 69–95 (2013)

    Article  ADS  Google Scholar 

  120. I.G. Ivastorza, J. Redondo, New experimental approaches in the search for axion-like particles. Progr. Part. Nucl. Phys. 102, 89–159 (2018)

    Article  ADS  Google Scholar 

  121. G.L. Klimchitskaya, Constraints on theoretical predictions beyond the standard model from the casimir effect and some other tabletop physics. Universe 7, 47 (2021)

    Article  ADS  Google Scholar 

  122. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. J.A. Frieman, M.S. Turner, D. Huterer, Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46, 385–432 (2008)

    Article  ADS  Google Scholar 

  125. Y.B. Zel’dovich, The cosmological constant and the theory of elementary particles. Uspekhi Fiz. Nauk 95, 209–230 (1968); Sov. Phys. Usp. 11, 381–393 (1968)

    Google Scholar 

  126. R.J. Adler, B. Casey, O.C. Jacob, Vacuum catastrophe: an elementary exposition of the cosmological constant problem. Am. J. Phys. 63, 620–626 (1995)

    Article  ADS  Google Scholar 

  127. J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. D 69, 044026 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  128. K.A. Olive, M. Pospelov: Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 043524 (2008)

    Article  ADS  Google Scholar 

  129. K. Hinterbichler, J. Khoury, Screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010)

    Article  ADS  Google Scholar 

  130. K. Hinterbichler, J. Khoury, A. Levy, A. Matas, Symmetron cosmology. Phys. Rev. D 84, 103521 (2011)

    Article  ADS  Google Scholar 

  131. D.D. Ryutov, D. Budker, V.V. Flambaum, A hypothetical effect of the maxwell-proca electromagnetic stresses on galaxy rotation curve. Astrophys. J. 871, 218 (2019)

    Article  ADS  Google Scholar 

  132. Y.N. Gnedin, S.V. Krasnikov, Polarimetric effects associated with the detection of Goldstone bosons in stars and galaxies. Sov. Phys. JETP 75, 933–937 (1992); Zh. Eksp. Teor. Fiz. 102, 1729–1738 (1992)

    Google Scholar 

  133. J.E. Moody, F. Wilczek, New macroscopic forces? Phys. Rev. D 30, 130–139 (1984)

    Article  ADS  Google Scholar 

  134. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 (Benjamin, New York, 1969)

    MATH  Google Scholar 

  135. E.G. Adelberger, E. Fischbach, D.E. Krause, R.D. Newman, Constraining the couplings of massive pseudoscalars using gravity and optical experiments. Phys. Rev. D 68, 062002 (2003)

    Article  ADS  Google Scholar 

  136. F. Ferrer, M. Nowakowski, Higgs- and Goldstone-boson-mediated long range forces. Phys. Rev. D 59, 075009 (1999)

    Article  ADS  Google Scholar 

  137. S.D. Drell, K. Huang, Many-body forces and nuclear saturation. Phys. Rev. 91, 1527–1543 (1953)

    Article  ADS  MATH  Google Scholar 

  138. S. Aldaihan, D.E. Krause, J.C. Long, W.M. Snow, Calculations of the dominant long-range, spin-independent contributions to the interaction energy between two nonrelativistic Dirac fermions from double-boson exchange of spin-0 and spin-1 bosons with spin-dependent couplings. Phys. Rev. D 95, 096005 (2017)

    Article  ADS  Google Scholar 

  139. I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980)

    Google Scholar 

  140. G.L. Klimchitskaya, V.M. Mostepanenko, Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. Eur. Phys. J. C 75, 164 (2015)

    Article  ADS  Google Scholar 

  141. N.F. Ramsey, The tensor force between two protons at long range. Phys. A 96, 285–289 (1979)

    Article  Google Scholar 

  142. M.P. Ledbetter, M.V. Romalis, D.F. Jackson Kimball, Constraints on short-range spin-dependent interactions from scalar spin-spin coupling in deuterated molecular hydrogen. Phys. Rev. Lett. 110, 040402 (2013)

    Article  ADS  Google Scholar 

  143. J.C. Long, H.W. Chan, A.B. Churnside, E.A. Gulbis, M.C.M. Varney, J.C. Price, Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003)

    Article  ADS  Google Scholar 

  144. J.C. Long, V.A. Kosteleck’y, Search for Lorentz violation in short-range gravity. Phys. Rev. D 91, 092003 (2015)

    Article  ADS  Google Scholar 

  145. G. Vasilakis, J.M. Brown, T.R. Kornak, M.V. Romalis, Limits on new long range nuclear spin-dependent forces set with a K-\({ }^3\)He comagnetometer. Phys. Rev. Lett. 103, 261801 (2009)

    Google Scholar 

  146. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Constraints on the parameters of an axion from measurements of the thermal Casimir-Polder force. Phys. Rev. D 89, 035010 (2014)

    Article  ADS  Google Scholar 

  147. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Stronger constraints on an axion from measuring the Casimir interaction by means of a dynamic atomic force microscope. Phys. Rev. D 89, 075002 (2014)

    Article  ADS  Google Scholar 

  148. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Constraining axion-nucleon coupling constants from measurements of effective Casimir pressure by means of micromachined oscillator. Eur. Phys. J. C 74, 2859 (2014)

    Article  ADS  Google Scholar 

  149. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces. Phys. Rev. D 90, 055013 (2014)

    Article  ADS  Google Scholar 

  150. G.L. Klimchitskaya, V.M. Mostepanenko, Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Phys. Rev. D 95, 123013 (2017)

    Article  ADS  Google Scholar 

  151. V.M. Mostepanenko, G.L. Klimchitskaya, The state of the art in constraining axion-to-nucleon coupling and non-newtonian gravity from laboratory experiments. Universe 6, 147 (2020)

    Article  ADS  Google Scholar 

  152. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Constraining axion coupling constants from measuring the Casimir interaction between polarized test bodies. Phys. Rev. D 94, 035011 (2016)

    Article  ADS  Google Scholar 

  153. K. Takyu, K.M. Itoh, K. Oka, N. Saito, V.I. Ozhogin, Growth and characterization of the isotopically enriched \({ }^{28}\)Si bulk single crystal. Jpn. J. Appl. Phys. 38, L1493 (1999)

    Google Scholar 

  154. P. Brax, C. van de Bruck, A.-C. Davis, D.F. Mota, D. Shaw, Detecting chameleons through Casimir force measurements. Phys. Rev. D 76, 124034 (2007)

    Article  ADS  Google Scholar 

  155. D.F. Mota, D.J. Shaw, Evading equivalence principle violations, cosmological, and experimental constraints in scalar field theories with a strong coupling to matter. Phys. Rev. D 75, 063501 (2007)

    Article  ADS  Google Scholar 

  156. C. Burrage, J. Sakstein, Tests of chameleon gravity. Living Rev. Relativ. 21, 1 (2018)

    Article  ADS  MATH  Google Scholar 

  157. B. Elder, V. Vardanyan, Y. Arkami, P. Brax, A.-C. Davis, R.S. Decca, Classical symmetron force in Casimir experiments. Phys. Rev. D 101, 064065 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  158. G.L. Klimchitskaya, Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. Eur. Phys. J. C 77, 315 (2017)

    Article  ADS  Google Scholar 

  159. A. Almasi, P. Brax, D. Iannuzzi, R.I.P. Sedmik, Force sensor for chameleon and Casimir force experiments with parallel-plate configuration. Phys. Rev. D 91, 102002 (2015)

    Article  ADS  Google Scholar 

  160. R. Sedmik, P. Brax, Status report and first light from Cannex: Casimir force measurements between flat parallel plates. J. Phys. Conf. Ser. 1138, 012014 (2018)

    Article  Google Scholar 

  161. G.L. Klimchitskaya, V.M. Mostepanenko, R.I.P. Sedmik, H. Abele, Prospects for searching thermal effects, non-newtonian gravity and axion-like particles: CANNEX test of the quantum vacuum. Symmetry 11, 407 (2019)

    Article  ADS  Google Scholar 

  162. G.L. Klimchitskaya, V.M. Mostepanenko, R.I.P. Sedmik, Casimir pressure between metallic plates out of thermal equilibrium: proposed test for the relaxation properties of free electrons. Phys. Rev. A 100, 022511 (2019)

    Article  ADS  Google Scholar 

  163. R.I.P. Sedmik, Casimir and non-newtonian force experiment (CANNEX): review, status, and outlook. Int. J. Mod. Phys. A 35, 2040008 (2020)

    Article  ADS  Google Scholar 

  164. R. Bennett, D.H.J. O’Dell, Revealing short-range non-Newtonian gravity through Casimir-Polder shielding. New J. Phys. 21, 033032 (2019)

    Article  ADS  Google Scholar 

  165. L. Mattioli, A.M. Frassino, O. Panella, Casimir-Polder interactions with massive photons: implications for BSM physics. Phys. Rev. D 100, 116023 (2019)

    Article  ADS  Google Scholar 

  166. L. Chen, J. Liu, K. Zhuy, Constraining the axion-nucleon coupling and non-Newtonian gravity with a levitated optomechanical device. Phys. Rev. D 106, 095007 (2022)

    Article  ADS  Google Scholar 

  167. C.C. Haddock, N. Oi, K. Hirota, T. Ino, M. Kitaguchi, S. Matsumoto, K. Mishima, T. Shima, H.M. Shimizu, W.M. Snow, T. Yoshioka, Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam. Phys. Rev. D 97, 062002 (2018)

    Article  ADS  Google Scholar 

  168. P. Brax, S. Fichet, G. Pignol, Bounding quantum dark forces. Phys. Rev. D 97, 115034 (2018)

    Article  ADS  Google Scholar 

  169. S. Sponar, R.I.P. Sedmik, M. Pitschmann, H. Abele, Y. Hasegawa, Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons. Nature Rev. Phys. 3, 309–327 (2021)

    Article  ADS  Google Scholar 

  170. B. Heacock, T. Fujiie, R.W. Haun, A. Henins, K. Hirota, T. Hosobata, M.G. Huber, M. Kitaguchi, D.A. Pushin, H. Shimizu, M. Takeda, R. Valdillez, Y. Yamagata, A. Young, Pendell”osung interferometry probes the neutron charge radius, lattice dynamics, and fifth forces. Science 373, 1239–1243 (2021)

    Article  ADS  Google Scholar 

  171. J.M. Rocha, F. Dahia, Neutron interferometry and tests of short-range modifications of gravity. Phys. Rev. D 103, 124014 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  172. M. Borkowski, A.A. Buchachenko, R. Ciuryło, P.S. Julienne, H. Yamada, Y. Kikuchi, Y. Takasu, Y. Takahashi, Weakly bound molecules as sensors of new gravitylike forces. Sci. Rep. 9, 14807 (2019)

    Article  ADS  Google Scholar 

  173. W.G. Hollik, M. Linster, T. Tabet, A study of new physics searches with tritium and similar molecules. Eur. Phys. J. C 80, 661 (2020)

    Article  ADS  Google Scholar 

  174. A.S. Lemos, Submillimeter constraints for non-Newtonian gravity from spectroscopy. Europhys. Lett. 135, 11001 (2021)

    Article  ADS  Google Scholar 

  175. E. Hebestreit, M. Frimmer, R. Reimann, L. Novotny, Sensing static forces with free-falling nanoparticles. Phys. Rev. Lett. 121, 063602 (2018)

    Article  ADS  Google Scholar 

  176. J. Liu, K.-D. Zhu, Detecting large extra dimensions with optomechanical levitated sensors. Eur. Phys. J. C 79, 18 (2019)

    Article  ADS  Google Scholar 

  177. X. Ren, J. Wang, R. Luo, L. Yin, J. Ding, G. Zeng, P. Luo, Search for an exotic parity-odd spin- and velocity-dependent interaction using a magnetic force microscope. Phys. Rev. D 104, 032008 (2021)

    Article  ADS  Google Scholar 

  178. H. Banks, M. McCullough, Charting the fifth force landscape. Phys. Rev. D 103, 075018 (2021)

    Article  ADS  Google Scholar 

  179. M. Faizal, H. Patel, Probing short distance gravity using temporal lensing. Int. J. Mod. Phys. A 36, 2150115 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

G.L.K. was partially funded by the Ministry of Science and Higher Education of Russian Federation (“The World-Class Research Center: Advanced Digital Technologies,” contract No. 075-15-2022-311 dated April 20, 2022). The research of V.M.M. was partially carried out in accordance with the Strategic Academic Leadership Program “Priority 2030” of the Kazan Federal University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimchitskaya, G.L., Mostepanenko, V.M. (2023). Testing Gravity and Predictions Beyond the Standard Model at Short Distances: The Casimir Effect. In: Pfeifer, C., Lämmerzahl, C. (eds) Modified and Quantum Gravity. Lecture Notes in Physics, vol 1017. Springer, Cham. https://doi.org/10.1007/978-3-031-31520-6_13

Download citation

Publish with us

Policies and ethics