Skip to main content

Functional Hypogonadism: Diabetes Mellitus, Obesity, Metabolic Syndrome, and Testosterone

  • Chapter
  • First Online:
Testosterone

Abstract

Low blood testosterone levels are found more frequently in patients with type 2 diabetes mellitus, obesity, and metabolic syndrome than in the general population, as shown by epidemiological studies. All these conditions are associated with insulin resistance, and there is a two-way relationship between them, and low testosterone levels: not only the metabolic disorder can lead to hypogonadism, but also testosterone deficiency can contribute to type 2 diabetes mellitus, obesity, and metabolic syndrome. Besides the sexual symptoms of loss of libido, erectile dysfunction, and absence of morning erections, low testosterone levels are associated with an increase in adipose tissue and a decrease in muscle mass, not only because testosterone induces differentiation of pluripotent mesenchymal cells into myocytes and inhibit conversion into adipocytes, but also low testosterone levels favor incorporation of triglycerides in fat cells due to inhibition of lipoprotein lipase activity. Most of the deaths in type 2 diabetes, obesity, and metabolic syndrome are due to cardiovascular diseases, and there is an increase of these disorders in men with low testosterone levels. There is consistent scientific evidence that testosterone replacement in hypogonadal patients can lessen the risk factors for cardiovascular diseases and decrease mortality. On the other hand, functional hypogonadism can be reversed by weight loss and better control of diabetes. The few studies that link testosterone replacement to an increase in cardiovascular death present methodological severe issues and are not confirmed by a careful meta-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schleich F, Legros JJ. Effects of androgen substitution on lipid profile in the adult and aging hypogonadal male. Eur J Endocrinol. 2004;151(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  2. Warren MP, Vu C. Central causes of hypogonadism—functional and organic. Endocrinol Metab Clin N Am. 2003;32(3):593–612.

    Article  CAS  Google Scholar 

  3. Louters M, Pearlman M, Solsrud E, Pearlman A. Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome. Int J Impot Res. 2021;34:714.

    Article  PubMed  Google Scholar 

  4. Barnouin Y, Armamento-Villareal R, Celli A, Jiang B, Paudyal A, Nambi V, et al. Testosterone replacement therapy added to intensive lifestyle intervention in older men with obesity and hypogonadism. J Clin Endocrinol Metab. 2021;106(3):e1096–e110.

    Article  PubMed  Google Scholar 

  5. Sultan S, Patel AG, El-Hassani S, Whitelaw B, Leca BM, Vincent RP, et al. Male obesity associated gonadal dysfunction and the role of bariatric surgery. Front Endocrinol (Lausanne). 2020;11:408.

    Article  PubMed  Google Scholar 

  6. Soares AH, Horie NC, Chiang LAP, Caramelli B, Matheus MG, Campos AH, et al. Effects of clomiphene citrate on male obesity-associated hypogonadism: a randomized, double-blind, placebo-controlled study. Int J Obes. 2018;42(5):953–63.

    Article  CAS  Google Scholar 

  7. Groti Antonic K, Antonic B, Zuran I, Pfeifer M. Testosterone treatment longer than 1 year shows more effects on functional hypogonadism and related metabolic, vascular, diabetic and obesity parameters (results of the 2-year clinical trial). Aging Male. 2020;1–13:1442.

    Article  Google Scholar 

  8. Dandona P, Dhindsa S, Chaudhuri A, Bhatia V, Topiwala S, Mohanty P. Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr Mol Med. 2008;8(8):816–28.

    Article  CAS  PubMed  Google Scholar 

  9. Ando S, Rubens R, Rottiers R. Androgen plasma levels in male diabetics. J Endocrinol Investig. 1984;7(1):21–4.

    Article  CAS  Google Scholar 

  10. Barrett-Connor E, Khaw KT, Yen SS. Endogenous sex hormone levels in older adult men with diabetes mellitus. Am J Epidemiol. 1990;132(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  11. Andersson B, Marin P, Lissner L, Vermeulen A, Bjorntorp P. Testosterone concentrations in women and men with NIDDM. Diabetes Care. 1994;17(5):405–11.

    Article  CAS  PubMed  Google Scholar 

  12. Defay R, Papoz L, Barny S, Bonnot-Lours S, Caces E, Simon D. Hormonal status and NIDDM in the European and Melanesian populations of New Caledonia: a case-control study. The CALedonia DIAbetes mellitus (CALDIA) study group. Int J Obes Relat Metab Disord. 1998;22(9):927–34.

    Article  CAS  PubMed  Google Scholar 

  13. Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care. 2000;23(7):912–8.

    Article  CAS  PubMed  Google Scholar 

  14. Betancourt-Albrecht M, Cunningham GR. Hypogonadism and diabetes. Int J Impot Res. 2003;15(Suppl 4):S14–20.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzilli R, Zamponi V, Olana S, Mikovic N, Cimadomo D, Defeudis G, et al. Erectile dysfunction as a marker of endocrine and glycemic disorders. J Endocrinol Investig. 2022;45:1527.

    Article  CAS  Google Scholar 

  16. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.

    Article  CAS  PubMed  Google Scholar 

  17. Morley JE, Charlton E, Patrick P, Kaiser FE, Cadeau P, McCready D, et al. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism. 2000;49(9):1239–42.

    Article  CAS  PubMed  Google Scholar 

  18. Heinemann LAJ, Zimmermann T, Vermeulen A, Thiel C, Hummel W. A new ‘aging males’ symptom’s rating scale. Aging Male. 1999;2(2):105–14.

    Article  Google Scholar 

  19. Smith KW, Feldman HA, McKinlay JB. Construction and field validation of a self-administered screener for testosterone deficiency (hypogonadism) in ageing men. Clin Endocrinol. 2000;53(6):703–11.

    Article  CAS  Google Scholar 

  20. Morley JE, Perry HM 3rd, Kevorkian RT, Patrick P. Comparison of screening questionnaires for the diagnosis of hypogonadism. Maturitas. 2006;53(4):424–9.

    Article  PubMed  Google Scholar 

  21. Meirelles RMR, Puppin BA. ADAM questionnaire is not useful for diabetic patients. J Men's Health. 2010;7(3):349.

    Article  Google Scholar 

  22. Simon D, Preziosi P, Barrett-Connor E, Roger M, Saint-Paul M, Nahoul K, et al. Interrelation between plasma testosterone and plasma insulin in healthy adult men: the telecom study. Diabetologia. 1992;35(2):173–7.

    Article  CAS  PubMed  Google Scholar 

  23. Gravholt CH, Jensen AS, Host C, Bojesen A. Body composition, metabolic syndrome and type 2 diabetes in Klinefelter syndrome. Acta Paediatr. 2011;100(6):871–7.

    Article  PubMed  Google Scholar 

  24. Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab. 2004;89(11):5462–8.

    Article  CAS  PubMed  Google Scholar 

  25. Tomar R, Dhindsa S, Chaudhuri A, Mohanty P, Garg R, Dandona P. Contrasting testosterone concentrations in type 1 and type 2 diabetes. Diabetes Care. 2006;29(5):1120–2.

    Article  CAS  PubMed  Google Scholar 

  26. Grossmann M, Thomas MC, Panagiotopoulos S, Sharpe K, Macisaac RJ, Clarke S, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab. 2008;93(5):1834–40.

    Article  CAS  PubMed  Google Scholar 

  27. Chandel A, Dhindsa S, Topiwala S, Chaudhuri A, Dandona P. Testosterone concentration in young patients with diabetes. Diabetes Care. 2008;31(10):2013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chillaron JJ, Fernandez-Miro M, Albareda M, Vila L, Colom C, Fontsere S, et al. Age, insulin requirements, waist circumference, and triglycerides predict hypogonadotropic hypogonadism in patients with type 1 diabetes. J Sex Med. 2015;12(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  29. Ho CH, Jaw FS, Wu CC, Chen KC, Wang CY, Hsieh JT, et al. The prevalence and the risk factors of testosterone deficiency in newly diagnosed and previously known type 2 diabetic men. J Sex Med. 2015;12(2):389–97.

    Article  CAS  PubMed  Google Scholar 

  30. Brand JS, Wareham NJ, Dowsett M, Folkerd E, van der Schouw YT, Luben RN, et al. Associations of endogenous testosterone and SHBG with glycated haemoglobin in middle-aged and older men. Clin Endocrinol. 2011;74(5):572–8.

    Article  CAS  Google Scholar 

  31. Yassin A, Haider A, Haider KS, Caliber M, Doros G, Saad F, et al. Testosterone therapy in men with hypogonadism prevents progression from prediabetes to type 2 diabetes: eight-year data from a registry study. Diabetes Care. 2019;42(6):1104–11.

    Article  CAS  PubMed  Google Scholar 

  32. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;22(15):3181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heald AH, Yadegar Far G, Livingston M, Fachim H, Lunt M, Narayanan RP, et al. Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycaemia in men with type 2 diabetes mellitus: a prospective cohort study. Cardiovasc Endocrinol Metab. 2021;10(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  34. Haffner SM, Shaten J, Stern MP, Smith GD, Kuller L. Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men. MRFIT research group. Multiple risk factor intervention trial. Am J Epidemiol. 1996;143(9):889–97.

    Article  CAS  PubMed  Google Scholar 

  35. Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Valkonen VP, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27(5):1036–41.

    Article  CAS  PubMed  Google Scholar 

  36. Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  37. Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care. 2000;23(4):490–4.

    Article  CAS  PubMed  Google Scholar 

  38. Svartberg J, Jenssen T, Sundsfjord J, Jorde R. The associations of endogenous testosterone and sex hormone-binding globulin with glycosylated hemoglobin levels, in community dwelling men. The tromso study. Diabetes Metab. 2004;30(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  39. Tibblin G, Adlerberth A, Lindstedt G, Bjorntorp P. The pituitary-gonadal axis and health in elderly men: a study of men born in 1913. Diabetes. 1996;45(11):1605–9.

    Article  CAS  PubMed  Google Scholar 

  40. Corona G, Mannucci E, Forti G, Maggi M. Following the common association between testosterone deficiency and diabetes mellitus, can testosterone be regarded as a new therapy for diabetes? Int J Androl. 2009;32(5):431–41.

    Article  CAS  PubMed  Google Scholar 

  41. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977;45(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  42. Amatruda JM, Harman SM, Pourmotabbed G, Lockwood DH. Depressed plasma testosterone and fractional binding of testosterone in obese males. J Clin Endocrinol Metab. 1978;47(2):268–71.

    Article  CAS  PubMed  Google Scholar 

  43. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab. 1979;48(4):633–8.

    Article  CAS  PubMed  Google Scholar 

  44. Strain GW, Zumoff B, Kream J, Strain JJ, Deucher R, Rosenfeld RS, et al. Mild hypogonadotropic hypogonadism in obese men. Metabolism. 1982;31(9):871–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zumoff B, Strain GW, Miller LK, Rosner W, Senie R, Seres DS, et al. Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab. 1990;71(4):929–31.

    Article  CAS  PubMed  Google Scholar 

  46. Svartberg J, von Muhlen D, Sundsfjord J, Jorde R. Waist circumference and testosterone levels in community dwelling men. The tromso study. Eur J Epidemiol. 2004;19(7):657–63.

    Article  CAS  PubMed  Google Scholar 

  47. Wu FC, Tajar A, Beynon JM, Pye SR, Silman AJ, Finn JD, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  48. Mogri M, Dhindsa S, Quattrin T, Ghanim H, Dandona P. Testosterone concentrations in young pubertal and post-pubertal obese males. Clin Endocrinol. 2013;78(4):593–9.

    Article  CAS  Google Scholar 

  49. Expert Panel on Detection E. Treatment of high blood cholesterol in A. Executive summary of the third report of the National cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97.

    Article  Google Scholar 

  50. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469–80.

    Article  CAS  PubMed  Google Scholar 

  51. Blouin K, Despres JP, Couillard C, Tremblay A, Prud'homme D, Bouchard C, et al. Contribution of age and declining androgen levels to features of the metabolic syndrome in men. Metabolism. 2005;54(8):1034–40.

    Article  CAS  PubMed  Google Scholar 

  52. Bojesen A, Juul S, Birkebaek NH, Gravholt CH. Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab. 2006;91(4):1254–60.

    Article  CAS  PubMed  Google Scholar 

  53. Li C, Ford ES, Li B, Giles WH, Liu S. Association of testosterone and sex hormone-binding globulin with metabolic syndrome and insulin resistance in men. Diabetes Care. 2010;33(7):1618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tajar A, Huhtaniemi IT, O'Neill TW, Finn JD, Pye SR, Lee DM, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European male aging study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–16.

    Article  CAS  PubMed  Google Scholar 

  55. Brand JS, van der Tweel I, Grobbee DE, Emmelot-Vonk MH, van der Schouw YT. Testosterone, sex hormone-binding globulin and the metabolic syndrome: a systematic review and meta-analysis of observational studies. Int J Epidemiol. 2011;40(1):189–207.

    Article  PubMed  Google Scholar 

  56. Garcia-Cruz E, Leibar-Tamayo A, Romero J, Piqueras M, Luque P, Cardenosa O, et al. Metabolic syndrome in men with low testosterone levels: relationship with cardiovascular risk factors and comorbidities and with erectile dysfunction. J Sex Med. 2013;10(10):2529–38.

    Article  CAS  PubMed  Google Scholar 

  57. Aslan Y, Guzel O, Balci M, Tuncel A, Yildiz M, Atan A. The impact of metabolic syndrome on serum total testosterone level in patients with erectile dysfunction. Aging Male. 2014;17(2):76–80.

    Article  CAS  PubMed  Google Scholar 

  58. Kuneinen S, Kaaja RJ, Vahlberg TJ, Korhonen PE. Metabolic syndrome is not associated with erectile dysfunction in apparently healthy men. Prim Care Diabetes. 2020;14:460.

    Article  PubMed  Google Scholar 

  59. Kwon H, Lee DG, Kang HC, Lee JH. The relationship between testosterone, metabolic syndrome, and mean carotid intima-media thickness in aging men. Aging Male. 2014;1-5:211.

    Article  Google Scholar 

  60. Antonio L, Wu FC, O'Neill TW, Pye SR, Carter EL, Finn JD, et al. Associations between sex steroids and the development of metabolic syndrome: a longitudinal study in European men. J Clin Endocrinol Metab. 2015;100(4):1396–404.

    Article  CAS  PubMed  Google Scholar 

  61. Hong D, Kim YS, Son ES, Kim KN, Kim BT, Lee DJ, et al. Total testosterone and sex hormone-binding globulin are associated with metabolic syndrome independent of age and body mass index in Korean men. Maturitas. 2013;74(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  62. Ogbera AO. Relationship between serum testosterone levels and features of the metabolic syndrome defining criteria in patients with type 2 diabetes mellitus. West Afr J Med. 2011;30(4):277–81.

    CAS  PubMed  Google Scholar 

  63. Corona G, Rastrelli G, Morelli A, Vignozzi L, Mannucci E, Maggi M. Hypogonadism and metabolic syndrome. J Endocrinol Investig. 2011;34(7):557–67.

    CAS  Google Scholar 

  64. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, et al. Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2006;91(6):1995–2010.

    Article  CAS  PubMed  Google Scholar 

  65. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology. 2003;144(11):5081–8.

    Article  CAS  PubMed  Google Scholar 

  66. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004;7(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  67. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513–54.

    Article  PubMed  Google Scholar 

  68. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National health and nutrition examination survey. J Clin Endocrinol Metab. 2011;96(9):2898–903.

    Article  CAS  PubMed  Google Scholar 

  69. Abdelhamed A, Hisasue S, Shirai M, Matsushita K, Wakumoto Y, Tsujimura A, et al. Testosterone replacement alters the cell size in visceral fat but not in subcutaneous fat in hypogonadal aged male rats as a late-onset hypogonadism animal model. Res Rep Urol. 2015;7:35–40.

    PubMed  PubMed Central  Google Scholar 

  70. Marin P, Oden B, Bjorntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab. 1995;80(1):239–43.

    CAS  PubMed  Google Scholar 

  71. Xu X, De Pergola G, Bjorntorp P. The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology. 1990;126(2):1229–34.

    Article  CAS  PubMed  Google Scholar 

  72. Russell SH, Small CJ, Stanley SA, Franks S, Ghatei MA, Bloom SR. The in vitro role of tumour necrosis factor-alpha and interleukin-6 in the hypothalamic-pituitary gonadal axis. J Neuroendocrinol. 2001;13(3):296–301.

    Article  CAS  PubMed  Google Scholar 

  73. Watanobe H, Hayakawa Y. Hypothalamic interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats. Endocrinology. 2003;144(11):4868–75.

    Article  CAS  PubMed  Google Scholar 

  74. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt—a major factor in the genesis of morbid obesity. Med Hypotheses. 1999;52(1):49–51.

    Article  CAS  PubMed  Google Scholar 

  75. Dhindsa S, Batra M, Kuhadiya N, Dandona P. Oestradiol concentrations are not elevated in obesity-associated hypogonadotrophic hypogonadism. Clin Endocrinol. 2014;80(3):464.

    Article  CAS  Google Scholar 

  76. Vermeulen A, Kaufman JM, Deslypere JP, Thomas G. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J Clin Endocrinol Metab. 1993;76(5):1140–6.

    CAS  PubMed  Google Scholar 

  77. Tena-Sempere M, Pinilla L, Gonzalez LC, Dieguez C, Casanueva FF, Aguilar E. Leptin inhibits testosterone secretion from adult rat testis in vitro. J Endocrinol. 1999;161(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  78. Caprio M, Isidori AM, Carta AR, Moretti C, Dufau ML, Fabbri A. Expression of functional leptin receptors in rodent leydig cells. Endocrinology. 1999;140(11):4939–47.

    Article  CAS  PubMed  Google Scholar 

  79. Isidori AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999;84(10):3673–80.

    CAS  PubMed  Google Scholar 

  80. Jockenhovel F, Blum WF, Vogel E, Englaro P, Muller-Wieland D, Reinwein D, et al. Testosterone substitution normalizes elevated serum leptin levels in hypogonadal men. J Clin Endocrinol Metab. 1997;82(8):2510–3.

    Article  CAS  PubMed  Google Scholar 

  81. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  85. Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson KF, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.

    Article  CAS  PubMed  Google Scholar 

  86. Bellastella G, Maiorino MI, Olita L, De Bellis A, Giugliano D, Esposito K. Anti-pituitary antibodies and hypogonadotropic hypogonadism in type 2 diabetes: in search of a role. Diabetes Care. 2013;36(8):e116–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dimopoulou C, Ceausu I, Depypere H, Lambrinoudaki I, Mueck A, Perez-Lopez FR, et al. EMAS position statement: testosterone replacement therapy in the aging male. Maturitas. 2015;84:94.

    Article  PubMed  Google Scholar 

  88. Goodman N, Guay A, Dandona P, Dhindsa S, Faiman C, Cunningham GR, et al. American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the association of testosterone and cardiovascular risk. Endocr Pract. 2015;21(9):1066–73.

    Article  PubMed  Google Scholar 

  89. Cheung KK, Luk AO, So WY, Ma RC, Kong AP, Chow FC, et al. Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: a review of current evidence. J Diabetes Investig. 2015;6(2):112–23.

    Article  CAS  PubMed  Google Scholar 

  90. Grossmann M, Hoermann R, Wittert G, Yeap BB. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Endocrinol. 2015;83(3):344–51.

    Article  CAS  Google Scholar 

  91. Sonmez A, Haymana C, Bolu E, Aydogdu A, Tapan S, Serdar M, et al. Metabolic syndrome and the effect of testosterone treatment in young men with congenital hypogonadotropic hypogonadism. Eur J Endocrinol. 2011;164(5):759–64.

    Article  CAS  PubMed  Google Scholar 

  92. Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9(1):e85805.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vigen R, O'Donnell CI, Baron AE, Grunwald GK, Maddox TM, Bradley SM, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310(17):1829–36.

    Article  CAS  PubMed  Google Scholar 

  94. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morgentaler A, Lunenfeld B. Testosterone and cardiovascular risk: world's experts take unprecedented action to correct misinformation. Aging Male. 2014;17(2):63–5.

    Article  PubMed  Google Scholar 

  96. Morgentaler A. Testosterone, cardiovascular risk, and hormonophobia. J Sex Med. 2014;11(6):1362–6.

    Article  PubMed  Google Scholar 

  97. Corona G, Maseroli E, Rastrelli G, Isidori AM, Sforza A, Mannucci E, et al. Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014;13(10):1–25.

    Article  Google Scholar 

  98. Saad F, Aversa A, Isidori AM, Zafalon L, Zitzmann M, Gooren L. Onset of effects of testosterone treatment and time span until maximum effects are achieved. Eur J Endocrinol. 2011;165(5):675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saad F, Haider A, Doros G, Traish A. Long-term treatment of hypogonadal men with testosterone produces substantial and sustained weight loss. Obesity (Silver Spring). 2013;21(10):1975–81.

    Article  CAS  PubMed  Google Scholar 

  100. Yassin DJ, Doros G, Hammerer PG, Yassin AA. Long-term testosterone treatment in elderly men with hypogonadism and erectile dysfunction reduces obesity parameters and improves metabolic syndrome and health-related quality of life. J Sex Med. 2014;11(6):1567–76.

    Article  CAS  PubMed  Google Scholar 

  101. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  102. Hyde Z, Norman PE, Flicker L, Hankey GJ, Almeida OP, McCaul KA, et al. Low free testosterone predicts mortality from cardiovascular disease but not other causes: the health in men study. J Clin Endocrinol Metab. 2012;97(1):179–89.

    Article  CAS  PubMed  Google Scholar 

  103. Yeap BB, Alfonso H, Chubb SA, Handelsman DJ, Hankey GJ, Almeida OP, et al. In older men an optimal plasma testosterone is associated with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart disease mortality, while estradiol levels do not predict mortality. J Clin Endocrinol Metab. 2014;99(1):E9–18.

    Article  PubMed  Google Scholar 

  104. Nanda A, Chen MH, Braccioforte MH, Moran BJ, D'Amico AV. Hormonal therapy use for prostate cancer and mortality in men with coronary artery disease-induced congestive heart failure or myocardial infarction. JAMA. 2009;302(8):866–73.

    Article  CAS  PubMed  Google Scholar 

  105. Araujo AB, Dixon JM, Suarez EA, Murad MH, Guey LT, Wittert GA. Clinical review: endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):3007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shores MM, Smith NL, Forsberg CW, Anawalt BD, Matsumoto AM. Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012;97(6):2050–8.

    Article  CAS  PubMed  Google Scholar 

  107. Muraleedharan V, Marsh H, Kapoor D, Channer KS, Jones TH. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur J Endocrinol. 2013;169(6):725–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Martins da Rocha Meirelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Rocha Meirelles, R.M. (2023). Functional Hypogonadism: Diabetes Mellitus, Obesity, Metabolic Syndrome, and Testosterone. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-031-31501-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31501-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31500-8

  • Online ISBN: 978-3-031-31501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics