Skip to main content

Physiology of Male Gonadotropic Axis and Disorders of Sex Development

  • Chapter
  • First Online:
Testosterone

Abstract

The hypothalamic-pituitary-testicular axis is activated at the third trimester of intrauterine life and in the neonatal period. Fetus testes differentiate by the end of the fifth embryonic weeks, before the gonadotrophs are functionally active. Therefore, GnRH deficiency does not affect male sexual differentiation.

The 46,XY DSD are characterized by atypical or female external genitalia, caused by incomplete intrauterine masculinization, in the presence or absence of Müllerian structures. 46,XY DSD result from decreased production of testosterone, decreased conversion of testosterone into DHT or from impairment of their peripheral action. At histological analysis, testicular tissue in 46,XY DSD patients can be absent, partially or completely dysgenetic, or almost normal. Taking in account testosterone levels, the etiology of the 46,XY DSD can be classified into two large groups: low testosterone secretion and normal or high testosterone secretion.

The majority of DSD patients present atypical genitalia and their sex assignment may be a complex procedure. The choice of male sex-of rearing in 46,XY babies with atypical genitalia is a challenge situation. The participation of a multidisciplinary team is essential in this process and the fast identification of a molecular defect causative of the disorder might collaborate in this decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001;22(1):111–51.

    CAS  PubMed  Google Scholar 

  2. Petersen C, Soder O. The sertoli cell--a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm Res. 2006;66(4):153–61.

    CAS  PubMed  Google Scholar 

  3. Rey RA, Grinspon RP, Gottlieb S, Pasqualini T, Knoblovits P, Aszpis S, et al. Male hypogonadism: an extended classification based on a developmental, endocrine physiology-based approach. Andrology. 2013;1(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  4. Silveira LG, Latronico AC, Seminara SB. Kisspeptin and clinical disorders. Adv Exp Med Biol. 2013;784:187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467–75.

    Article  CAS  PubMed  Google Scholar 

  6. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.

    Article  CAS  PubMed  Google Scholar 

  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92(3):1235–316.

    Article  CAS  PubMed  Google Scholar 

  9. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sherins RJ, Loriaux DL. Studies of the role of sex steroids in the feedback control of FSH concentrations in men. J Clin Endocrinol Metab. 1973;36(5):886–93.

    Article  CAS  PubMed  Google Scholar 

  11. Santen RJ, Bardin CW. Episodic luteinizing hormone secretion in man. Pulse analysis, clinical interpretation, physiologic mechanisms. J Clin Invest. 1973;52(10):2617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tilbrook AJ, de Kretser DM, Cummins JT, Clarke IJ. The negative feedback effects of testicular steroids are predominantly at the hypothalamus in the ram. Endocrinology. 1991;129(6):3080–92.

    Article  CAS  PubMed  Google Scholar 

  13. Hayes FJ, Seminara SB, Decruz S, Boepple PA, Crowley WF Jr. Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab. 2000;85(9):3027–35.

    CAS  PubMed  Google Scholar 

  14. George JT, Veldhuis JD, Roseweir AK, Newton CL, Faccenda E, Millar RP, et al. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J Clin Endocrinol Metab. 2011;96(8):E1228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology. 2005;146(4):1689–97.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol. 2004;16(10):850–8.

    Article  CAS  PubMed  Google Scholar 

  17. Young J, George JT, Tello JA, Francou B, Bouligand J, Guiochon-Mantel A, et al. Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic implications. Neuroendocrinology. 2013;97(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  18. Decker MH, Loriaux DL, Cutler GB Jr. A seminiferous tubular factor is not obligatory for regulation of plasma follicle-stimulating hormone in the rat. Endocrinology. 1981;108(3):1035–9.

    Article  CAS  PubMed  Google Scholar 

  19. de Kretser DM, Robertson DM. The isolation and physiology of inhibin and related proteins. Biol Reprod. 1989;40(1):33–47.

    Article  PubMed  Google Scholar 

  20. Forage RG, Ring JM, Brown RW, McInerney BV, Cobon GS, Gregson RP, et al. Cloning and sequence analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid. Proc Natl Acad Sci U S A. 1986;83(10):3091–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, et al. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature. 1986;321(6072):779–82.

    Article  CAS  PubMed  Google Scholar 

  22. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 1986;321(6072):776–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci U S A. 1987;84(23):8282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin. Science. 1990;247(4944):836–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sharpe RM, Turner KJ, McKinnell C, Groome NP, Atanassova N, Millar MR, et al. Inhibin B levels in plasma of the male rat from birth to adulthood: effect of experimental manipulation of Sertoli cell number. J Androl. 1999;20(1):94–101.

    CAS  PubMed  Google Scholar 

  26. Anderson RA, Wallace EM, Groome NP, Bellis AJ, Wu FC. Physiological relationships between inhibin B, follicle stimulating hormone secretion and spermatogenesis in normal men and response to gonadotrophin suppression by exogenous testosterone. Hum Reprod. 1997;12(4):746–51.

    Article  CAS  PubMed  Google Scholar 

  27. Krummen LA, Toppari J, Kim WH, Morelos BS, Ahmad N, Swerdloff RS, et al. Regulation of testicular inhibin subunit messenger ribonucleic acid levels in vivo: effects of hypophysectomy and selective follicle-stimulating hormone replacement. Endocrinology. 1989;125(3):1630–7.

    Article  CAS  PubMed  Google Scholar 

  28. Wallace EM, Groome NP, Riley SC, Parker AC, Wu FC. Effects of chemotherapy-induced testicular damage on inhibin, gonadotropin, and testosterone secretion: a prospective longitudinal study. J Clin Endocrinol Metab. 1997;82(9):3111–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology. 1990;127(6):3206–14.

    Article  CAS  PubMed  Google Scholar 

  30. Archambeault DR, Yao HH. Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci U S A. 2010;107(23):10526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mendis SH, Meachem SJ, Sarraj MA, Loveland KL. Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol Reprod. 2011;84(2):379–91.

    Article  CAS  PubMed  Google Scholar 

  32. de Winter JP, Themmen AP, Hoogerbrugge JW, Klaij IA, Grootegoed JA, de Jong FH. Activin receptor mRNA expression in rat testicular cell types. Mol Cell Endocrinol. 1992;83(1):R1–8.

    Article  PubMed  Google Scholar 

  33. Meinhardt A, O’Bryan MK, McFarlane JR, Loveland KL, Mallidis C, Foulds LM, et al. Localization of follistatin in the rat testis. J Reprod Fertil. 1998;112(2):233–41.

    Article  CAS  PubMed  Google Scholar 

  34. Tilbrook AJ, de Kretser DM, Dunshea FR, Klein R, Robertson DM, Clarke IJ, et al. The testis is not the major source of circulating follistatin in the ram. J Endocrinol. 1996;149(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  35. Ramaswamy S, Pohl CR, McNeilly AS, Winters SJ, Plant TM. The time course of follicle-stimulating hormone suppression by recombinant human inhibin A in the adult male rhesus monkey (Macaca mulatta). Endocrinology. 1998;139(8):3409–15.

    Article  CAS  PubMed  Google Scholar 

  36. Tilbrook AJ, De Kretser DM, Clarke IJ. Human recombinant inhibin A suppresses plasma follicle-stimulating hormone to intact levels but has no effect on luteinizing hormone in castrated rams. Biol Reprod. 1993;49(4):779–88.

    Article  CAS  PubMed  Google Scholar 

  37. Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature. 1995;374(6520):356–60.

    Article  CAS  PubMed  Google Scholar 

  38. Chemes HE, Dym M, Raj HG. Hormonal regulation of Sertoli cell differentiation. Biol Reprod. 1979;21(1):251–62.

    Article  CAS  PubMed  Google Scholar 

  39. Josso N, Picard JY, Rey R, di Clemente N. Testicular anti-Mullerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev. 2006;3(4):347–58.

    PubMed  Google Scholar 

  40. Rey RA, Musse M, Venara M, Chemes HE. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech. 2009;72(11):787–95.

    Article  CAS  PubMed  Google Scholar 

  41. Young J, Rey R, Couzinet B, Chanson P, Josso N, Schaison G. Antimullerian hormone in patients with hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 1999;84(8):2696–9.

    CAS  PubMed  Google Scholar 

  42. Jensen TK, Andersson AM, Hjollund NH, Scheike T, Kolstad H, Giwercman A, et al. Inhibin B as a serum marker of spermatogenesis: correlation to differences in sperm concentration and follicle-stimulating hormone levels. A study of 349 Danish men. J Clin Endocrinol Metab. 1997;82(12):4059–63.

    CAS  PubMed  Google Scholar 

  43. Mendonca BB, Domenice S, Arnhold IJ, Costa EM. 46,XY disorders of sex development (DSD). Clin Endocrinol. 2009;70(2):173–87.

    CAS  Google Scholar 

  44. MacLaughlin DT, Donahoe PK. Sex determination and differentiation. N Engl J Med. 2004;350(4):367–78.

    Article  CAS  PubMed  Google Scholar 

  45. Achermann JC, Domenice S, Bachega TA, Nishi MY, Mendonca BB. Disorders of sex development: effect of molecular diagnostics. Nat Rev Endocrinol. 2015;11(8):478–88.

    Article  PubMed  Google Scholar 

  46. New MI, Lekarev O, Parsa A, Yuen TT, O’Malley BW, Hammer GD. Genetic steroid disorders. Amsterdam; Boston; Heidelberg; London; New York; Oxford; Paris; San Diego; Singapore; Sydney; Tokyo: Elsevier; 2014. xiii, 392 p.

    Google Scholar 

  47. Grino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 1990;126(2):1165–72.

    Article  CAS  PubMed  Google Scholar 

  48. Ostrer H. Disorders of sex development (DSDs): an update. J Clin Endocrinol Metab. 2014;99(5):1503–9.

    Article  CAS  PubMed  Google Scholar 

  49. Berkovitz GD, Fechner PY, Zacur HW, Rock JA, Snyder HM III, Migeon CJ, et al. Clinical and pathologic spectrum of 46,XY gonadal dysgenesis: its relevance to the understanding of sex differentiation. Medicine (Baltimore). 1991;70(6):375–83.

    Article  CAS  PubMed  Google Scholar 

  50. Arnhold IJ, de Mendonca BB, Toledo SP, Madureira G, Nicolau W, Bisi H, et al. Leydig cell hypoplasia causing male pseudohermaphroditism: case report and review of the literature. Rev Hosp Clin Fac Med Sao Paulo. 1987;42(5):227–32.

    CAS  PubMed  Google Scholar 

  51. Arnhold IJ, Mendonca BB, Bloise W, Toledo SP. Male pseudohermaphroditism resulting from Leydig cell hypoplasia. J Pediatr. 1985;106(6):1057.

    Article  CAS  PubMed  Google Scholar 

  52. Latronico AC, Anasti J, Arnhold IJ, Rapaport R, Mendonca BB, Bloise W, et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N Engl J Med. 1996;334(8):507–12.

    Article  CAS  PubMed  Google Scholar 

  53. Toledo SP, Arnhold IJ, Luthold W, Russo EM, Saldanha PH. Leydig cell hypoplasia determining familial hypergonadotropic hypogonadism. Prog Clin Biol Res. 1985;200:311–4.

    CAS  PubMed  Google Scholar 

  54. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med. 1994;330(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  55. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev. 1988;9(3):295–318.

    Article  CAS  PubMed  Google Scholar 

  56. Geller DH, Auchus RJ, Miller WL. P450c17 mutations R347H and R358Q selectively disrupt 17,20-lyase activity by disrupting interactions with P450 oxidoreductase and cytochrome b5. Mol Endocrinol. 1999;13(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  57. Andersson S, Moghrabi N. Physiology and molecular genetics of 17 beta-hydroxysteroid dehydrogenases. Steroids. 1997;62(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins EP, Andersson S, Imperato-McGinley J, Wilson JD, Russell DW. Genetic and pharmacological evidence for more than one human steroid 5 alpha-reductase. J Clin Invest. 1992;89(1):293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thigpen AE, Davis DL, Milatovich A, Mendonca BB, Imperato-McGinley J, Griffin JE, et al. Molecular genetics of steroid 5 alpha-reductase 2 deficiency. J Clin Invest. 1992;90(3):799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chavez B, Valdez E, Vilchis F. Uniparental disomy in steroid 5alpha-reductase 2 deficiency. J Clin Endocrinol Metab. 2000;85(9):3147–50.

    CAS  PubMed  Google Scholar 

  61. Mendonca BB, Inacio M, Costa EM, Arnhold IJ, Silva FA, Nicolau W, et al. Male pseudohermaphroditism due to steroid 5alpha-reductase 2 deficiency. Diagnosis, psychological evaluation, and management. Medicine (Baltimore). 1996;75(2):64–76.

    Article  CAS  PubMed  Google Scholar 

  62. Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419–28.

    Article  CAS  PubMed  Google Scholar 

  63. Hannema SE, Scott IS, Rajpert-De Meyts E, Skakkebaek NE, Coleman N, Hughes IA. Testicular development in the complete androgen insensitivity syndrome. J Pathol. 2006;208(4):518–27.

    Article  CAS  PubMed  Google Scholar 

  64. Cools M, van Aerde K, Kersemaekers AM, Boter M, Drop SL, Wolffenbuttel KP, et al. Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. J Clin Endocrinol Metab. 2005;90(9):5295–303.

    Article  CAS  PubMed  Google Scholar 

  65. Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009;30(2):119–32.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zuccarello D, Ferlin A, Vinanzi C, Prana E, Garolla A, Callewaert L, et al. Detailed functional studies on androgen receptor mild mutations demonstrate their association with male infertility. Clin Endocrinol. 2008;68(4):580–8.

    Article  CAS  Google Scholar 

  67. Ahmed SF, Cheng A, Dovey L, Hawkins JR, Martin H, Rowland J, et al. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J Clin Endocrinol Metab. 2000;85(2):658–65.

    CAS  PubMed  Google Scholar 

  68. Melo KF, Mendonca BB, Billerbeck AE, Costa EM, Inacio M, Silva FA, et al. Clinical, hormonal, behavioral, and genetic characteristics of androgen insensitivity syndrome in a Brazilian cohort: five novel mutations in the androgen receptor gene. J Clin Endocrinol Metab. 2003;88(7):3241–50.

    Article  CAS  PubMed  Google Scholar 

  69. Mendonca BB, Inacio M, Arnhold IJ, Costa EM, Bloise W, Martin RM, et al. Male pseudohermaphroditism due to 17 beta-hydroxysteroid dehydrogenase 3 deficiency. Diagnosis, psychological evaluation, and management. Medicine (Baltimore). 2000;79(5):299–309.

    Article  CAS  PubMed  Google Scholar 

  70. Sircili MH, e Silva FA, Costa EM, Brito VN, Arnhold IJ, Denes FT, et al. Long-term surgical outcome of masculinizing genitoplasty in large cohort of patients with disorders of sex development. J Urol. 2010;184(3):1122–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berenice Bilharinho Mendonca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendonca, B.B., Costa, E.M.F. (2023). Physiology of Male Gonadotropic Axis and Disorders of Sex Development. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-031-31501-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31501-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31500-8

  • Online ISBN: 978-3-031-31501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics