Skip to main content

Male Hypogonadism and Fertility

  • Chapter
  • First Online:
Testosterone

Abstract

An increase in public awareness and direct-to-consumer marketing has led to an increase in the number of men seeking evaluation for hypogonadism. Whether due to the physiological dependence of spermatogenesis on an intact hypothalamic pituitary hormonal axis or due to the repercussions of suppressive hypogonadal treatments on semen parameters, male hypogonadism is tightly associated with infertility. Proper assessment and management of the hypogonadal male necessitates an evaluation for the underlying etiology along with a thorough discussion on the underlying goals of therapy, including current and future reproductive potential. Therapy to address the underlying hypogonadal symptoms ought to take into consideration the reproductive implications, and, when appropriate, alternatives to exogenous testosterone therapy should be utilized to allow for the preservation or optimization of fertility potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar P, Kumar N, Thakur DS, Patidar A. Male hypogonadism: symptoms and treatment. J Adv Pharm Technol Res. 2010;1(3):297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Araujo AB, O'Donnell AB, Brambilla DJ, Simpson WB, Longcope C, Matsumoto AM, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male aging study. J Clin Endocrinol Metab. 2004;89(12):5920–6.

    Article  CAS  PubMed  Google Scholar 

  3. Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O'Neill TW, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male aging study. J Clin Endocrinol Metab. 2008;93(7):2737–45.

    Article  CAS  PubMed  Google Scholar 

  4. Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.

    Article  PubMed  Google Scholar 

  5. Sigman M, Jarow JP. Endocrine evaluation of infertile men. Urology. 1997;50(5):659–64.

    Article  CAS  PubMed  Google Scholar 

  6. Bobjer J, Bogefors K, Isaksson S, Leijonhufvud I, Åkesson K, Giwercman YL, et al. High prevalence of hypogonadism and associated impaired metabolic and bone mineral status in subfertile men. Clin Endocrinol. 2016;85(2):189–95.

    Article  CAS  Google Scholar 

  7. Sussman EM, Chudnovsky A, Niederberger CS. Hormonal evaluation of the infertile male: has it evolved? Urol Clin North Am. 2008;35(2):147–55. vii

    Article  PubMed  Google Scholar 

  8. Schlegel PN, Sigman M, Collura B, De Jonge CJ, Eisenberg ML, Lamb DJ, et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil Steril. 2021;115(1):54–61.

    Article  PubMed  Google Scholar 

  9. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(Suppl 1):1–8.

    Article  PubMed  Google Scholar 

  10. Matthiesson KL, Stanton PG, O'Donnell L, Meachem SJ, Amory JK, Berger R, et al. Effects of testosterone and levonorgestrel combined with a 5alpha-reductase inhibitor or gonadotropin-releasing hormone antagonist on spermatogenesis and intratesticular steroid levels in normal men. J Clin Endocrinol Metab. 2005;90(10):5647–55.

    Article  CAS  PubMed  Google Scholar 

  11. Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol. 2014;30:2–13.

    Article  CAS  PubMed  Google Scholar 

  12. Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne). 2018;9:763.

    Article  PubMed  Google Scholar 

  13. Majzoub A, Sabanegh E Jr. Testosterone replacement in the infertile man. Transl Androl Urol. 2016;5(6):859–65.

    Article  PubMed  PubMed Central  Google Scholar 

  14. EAU Guidelines. EAU Guidelines on sexual and reproductive—Male hypogonadism. Arnhem: EAU Guidelines Office; 2022.

    Google Scholar 

  15. Nielsen J, Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet. 1991;87(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  16. Klinefelter HF Jr, Reifenstein EC Jr, Albright F Jr. Syndrome characterized by gynecomastia, aspermatogenesis without A-Leydigism, and increased excretion of follicle-stimulating hormone. J Clin Endocrinol. 1942;2(11):615–27.

    Article  CAS  Google Scholar 

  17. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature. 1959;183(4657):302–3.

    Article  CAS  PubMed  Google Scholar 

  18. Boada R, Janusz J, Hutaff-Lee C, Tartaglia N. The cognitive phenotype in Klinefelter syndrome: a review of the literature including genetic and hormonal factors. Dev Disabil Res Rev. 2009;15(4):284–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Samplaski MK, Lo KC, Grober ED, Millar A, Dimitromanolakis A, Jarvi KA. Phenotypic differences in mosaic Klinefelter patients as compared with non-mosaic Klinefelter patients. Fertil Steril. 2014;101(4):950–5.

    Article  PubMed  Google Scholar 

  20. Paduch DA, Fine RG, Bolyakov A, Kiper J. New concepts in Klinefelter syndrome. Curr Opin Urol. 2008;18(6):621–7.

    Article  PubMed  Google Scholar 

  21. Kallmann F. The genetic aspects of primary eunuchoidism. Am J Ment Defic. 1944;48:203–36.

    Google Scholar 

  22. Laitinen EM, Vaaralahti K, Tommiska J, Eklund E, Tervaniemi M, Valanne L, et al. Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. Orphanet J Rare Dis. 2011;6:41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Balasubramanian R, Crowley WF Jr. Isolated gonadotropin-releasing hormone (GnRH) deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Gripp KW, et al., editors. GeneReviews(®). Seattle, WA: University of Washington. Seattle, Copyright © 1993-2022, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.

    Google Scholar 

  24. Teixeira L, Guimiot F, Dodé C, Fallet-Bianco C, Millar RP, Delezoide AL, et al. Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions. J Clin Invest. 2010;120(10):3668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, et al. Expert consensus document: European consensus statement on congenital hypogonadotropic hypogonadismpathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11(9):547–64.

    Article  PubMed  Google Scholar 

  26. Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader-Willi syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Gripp KW, et al., editors. GeneReviews(®). Seattle, WA: University of Washington. Seattle, Copyright © 1993-2022, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.

    Google Scholar 

  27. El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet. 2017;390(10108):2194–210.

    Article  CAS  PubMed  Google Scholar 

  28. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776–88.

    Article  CAS  PubMed  Google Scholar 

  29. Speiser PW, Arlt W, Auchus RJ, Baskin LS, Conway GS, Merke DP, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(11):4043–88.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stikkelbroeck NM, Otten BJ, Pasic A, Jager GJ, Sweep CG, Noordam K, et al. High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2001;86(12):5721–8.

    Article  CAS  PubMed  Google Scholar 

  31. Reisch N, Scherr M, Flade L, Bidlingmaier M, Schwarz HP, Müller-Lisse U, et al. Total adrenal volume but not testicular adrenal rest tumor volume is associated with hormonal control in patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95(5):2065–72.

    Article  CAS  PubMed  Google Scholar 

  32. Devoto CE, Madariaga AM, Fernández W. Congenital adrenal hyperplasia causing male infertility. Report of one case. Rev Med Chil. 2011;139(8):1060–5.

    Google Scholar 

  33. New M, Yau M, Lekarev O, Lin-Su K, Parsa A, Pina C, et al. Congenital adrenal hyperplasia. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. Endotext. South Dartmouth, MA: MDText.com, Inc. Copyright © 2000-2022, MDText.com, Inc; 2000.

    Google Scholar 

  34. Thapa S, Bhusal K. Hyperprolactinemia. StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

    Google Scholar 

  35. Vilar L, Vilar CF, Lyra R, Freitas MDC. Pitfalls in the diagnostic evaluation of hyperprolactinemia. Neuroendocrinology. 2019;109(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  36. De Rosa M, Zarrilli S, Di Sarno A, Milano N, Gaccione M, Boggia B, et al. Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine. 2003;20(1-2):75–82.

    Article  PubMed  Google Scholar 

  37. Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon JB, Chiles KA, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200(2):423–32.

    Article  PubMed  Google Scholar 

  38. Dabbous Z, Atkin SL. Hyperprolactinaemia in male infertility: clinical case scenarios. Arab J Urol. 2018;16(1):44–52.

    Article  PubMed  Google Scholar 

  39. Torre DL, Falorni A. Pharmacological causes of hyperprolactinemia. Ther Clin Risk Manag. 2007;3(5):929–51.

    PubMed  PubMed Central  Google Scholar 

  40. Shimon I, Benbassat C, Hadani M. Effectiveness of long-term cabergoline treatment for giant prolactinoma: study of 12 men. Eur J Endocrinol. 2007;156(2):225–31.

    Article  CAS  PubMed  Google Scholar 

  41. De Rosa M, Ciccarelli A, Zarrilli S, Guerra E, Gaccione M, Di Sarno A, et al. The treatment with cabergoline for 24 month normalizes the quality of seminal fluid in hyperprolactinaemic males. Clin Endocrinol. 2006;64(3):307–13.

    Article  Google Scholar 

  42. Baggett B, Engel LL, Balderas L, Lanman G, Savard K, Dorfman RI. Conversion of C14-testosterone to C14-estrogenic steroids by endocrine tissues1. Endocrinology. 1959;64(4):600–8.

    Article  CAS  PubMed  Google Scholar 

  43. Royer C, Lucas TF, Lazari MF, Porto CS. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat sertoli cells. Biol Reprod. 2012;86(4):108.

    Article  PubMed  Google Scholar 

  44. Atanassova N, McKinnell C, Walker M, Turner KJ, Fisher JS, Morley M, et al. Permanent effects of neonatal estrogen exposure in rats on reproductive hormone levels, Sertoli cell number, and the efficiency of spermatogenesis in adulthood. Endocrinology. 1999;140(11):5364–73.

    Article  CAS  PubMed  Google Scholar 

  45. Handelsman DJ, Wishart S, Conway AJ. Oestradiol enhances testosterone-induced suppression of human spermatogenesis. Hum Reprod. 2000;15(3):672–9.

    Article  CAS  PubMed  Google Scholar 

  46. Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab. 1994;79(4):997–1000.

    CAS  PubMed  Google Scholar 

  47. Tchernof A, Després JP, Bélanger A, Dupont A, Prud'homme D, Moorjani S, et al. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism. 1995;44(4):513–9.

    Article  CAS  PubMed  Google Scholar 

  48. Huang X, Aslanian RG. Case studies in modern drug discovery and development. Hoboken, NJ: Wiley; 2012.

    Book  Google Scholar 

  49. DiGiorgio L, Sadeghi-Nejad H. Off label therapies for testosterone replacement. Transl Androl Urol. 2016;5(6):844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jungck EC, Roy S, Greenblatt RB, Mahesh VB. Effect of clomiphene citrate on spermatogenesis in the human. A preliminary report. Fertil Steril. 1964;15:40–3.

    Article  CAS  PubMed  Google Scholar 

  51. Ross LS, Kandel GL, Prinz LM, Auletta F. Clomiphene treatment of the idiopathic hypofertile male: high-dose, alternate-day therapy. Fertil Steril. 1980;33(6):618–23.

    Article  CAS  PubMed  Google Scholar 

  52. World Health Organization, Stuart MC, Kouimtzi M, Hill S. In: Stuart MC, Kouimtzi M, Hill SR, editors. WHO model formulary 2008. Geneva: World Health Organization; 2009.

    Google Scholar 

  53. Trost LW, Khera M. Alternative treatment modalities for the hypogonadal patient. Curr Urol Rep. 2014;15(7):417.

    Article  PubMed  Google Scholar 

  54. Rodriguez KM, Pastuszak AW, Lipshultz LI. Enclomiphene citrate for the treatment of secondary male hypogonadism. Expert Opin Pharmacother. 2016;17(11):1561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dickey RP, Holtkamp DE. Development, pharmacology and clinical experience with clomiphene citrate. Hum Reprod Update. 1996;2(6):483–506.

    Article  CAS  PubMed  Google Scholar 

  56. Goldstein SR, Siddhanti S, Ciaccia AV, Plouffe L Jr. A pharmacological review of selective oestrogen receptor modulators. Hum Reprod Update. 2000;6(3):212–24.

    Article  CAS  PubMed  Google Scholar 

  57. Calof OM, Singh AB, Lee ML, Kenny AM, Urban RJ, Tenover JL, et al. Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J Gerontol A Biol Sci Med Sci. 2005;60(11):1451–7.

    Article  PubMed  Google Scholar 

  58. Wald M, Meacham RB, Ross LS, Niederberger CS. Testosterone replacement therapy for older men. J Androl. 2006;27(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  59. Guay AT, Perez JB, Fitaihi WA, Vereb M. Testosterone treatment in hypogonadal men: prostate-specific antigen level and risk of prostate cancer. Endocr Pract. 2000;6(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  60. Katz DJ, Nabulsi O, Tal R, Mulhall JP. Outcomes of clomiphene citrate treatment in young hypogonadal men. BJU Int. 2012;110(4):573–8.

    Article  CAS  PubMed  Google Scholar 

  61. Helo S, Mahon J, Ellen J, Wiehle R, Fontenot G, Hsu K, et al. Serum levels of enclomiphene and zuclomiphene in men with hypogonadism on long-term clomiphene citrate treatment. BJU Int. 2017;119(1):171–6.

    Article  CAS  PubMed  Google Scholar 

  62. Pasqualotto FF, Fonseca GP, Pasqualotto EB. Azoospermia after treatment with clomiphene citrate in patients with oligospermia. Fertil Steril. 2008;90(5):2014.e11–2.

    Article  PubMed  Google Scholar 

  63. Helo S, Ellen J, Mechlin C, Feustel P, Grossman M, Ditkoff E, et al. A randomized prospective double-blind comparison trial of clomiphene citrate and anastrozole in raising testosterone in hypogonadal infertile Men. J Sex Med. 2015;12(8):1761–9.

    Article  CAS  PubMed  Google Scholar 

  64. Chandrapal JC, Nielson S, Patel DP, Zhang C, Presson AP, Brant WO, et al. Characterising the safety of clomiphene citrate in male patients through prostate-specific antigen, haematocrit, and testosterone levels. BJU Int. 2016;118(6):994–1000.

    Article  CAS  PubMed  Google Scholar 

  65. Habous M, Giona S, Tealab A, Aziz M, Williamson B, Nassar M, et al. Clomiphene citrate and human chorionic gonadotropin are both effective in restoring testosterone in hypogonadism: a short-course randomized study. BJU Int. 2018;122(5):889–97.

    Article  CAS  PubMed  Google Scholar 

  66. Soares AH, Horie NC, Chiang LAP, Caramelli B, Matheus MG, Campos AH, et al. Effects of clomiphene citrate on male obesity-associated hypogonadism: a randomized, double-blind, placebo-controlled study. Int J Obes. 2018;42(5):953–63.

    Article  CAS  Google Scholar 

  67. World Health Organization. A double-blind trial of clomiphene citrate for the treatment of idiopathic male infertility. Int J Androl. 1992;15(4):299–307.

    Article  Google Scholar 

  68. Hussein A, Ozgok Y, Ross L, Rao P, Niederberger C. Optimization of spermatogenesis-regulating hormones in patients with non-obstructive azoospermia and its impact on sperm retrieval: a multicentre study. BJU Int. 2013;111(3 Pt B):E110–4.

    Article  CAS  PubMed  Google Scholar 

  69. Chua ME, Escusa KG, Luna S, Tapia LC, Dofitas B, Morales M. Revisiting oestrogen antagonists (clomiphene or tamoxifen) as medical empiric therapy for idiopathic male infertility: a meta-analysis. Andrology. 2013;1(5):749–57.

    Article  CAS  PubMed  Google Scholar 

  70. Moss JL, Crosnoe LE, Kim ED. Effect of rejuvenation hormones on spermatogenesis. Fertil Steril. 2013;99(7):1814–20.

    Article  CAS  PubMed  Google Scholar 

  71. Hassett MJ, Somerfield MR, Giordano SH. Management of Male breast cancer: ASCO guideline summary. JCO Oncol Pract. 2020;16(8):e839–e43.

    Article  PubMed  Google Scholar 

  72. Mokbel K. The evolving role of aromatase inhibitors in breast cancer. Int J Clin Oncol. 2002;7(5):279–83.

    Article  CAS  PubMed  Google Scholar 

  73. Lønning PE, Geisler J, Krag LE, Erikstein B, Bremnes Y, Hagen AI, et al. Effects of exemestane administered for 2 years versus placebo on bone mineral density, bone biomarkers, and plasma lipids in patients with surgically resected early breast cancer. J Clin Oncol. 2005;23(22):5126–37.

    Article  PubMed  Google Scholar 

  74. Perez EA, Josse RG, Pritchard KI, Ingle JN, Martino S, Findlay BP, et al. Effect of letrozole versus placebo on bone mineral density in women with primary breast cancer completing 5 or more years of adjuvant tamoxifen: a companion study to NCIC CTG MA.17. J Clin Oncol. 2006;24(22):3629–35.

    Article  CAS  PubMed  Google Scholar 

  75. Lenz AM, Shulman D, Eugster EA, Rahhal S, Fuqua JS, Pescovitz OH, et al. Bicalutamide and third-generation aromatase inhibitors in testotoxicosis. Pediatrics. 2010;126(3):e728–33.

    Article  PubMed  Google Scholar 

  76. Wickman S, Kajantie E, Dunkel L. Effects of suppression of estrogen action by the p450 aromatase inhibitor letrozole on bone mineral density and bone turnover in pubertal boys. J Clin Endocrinol Metab. 2003;88(8):3785–93.

    Article  CAS  PubMed  Google Scholar 

  77. Muller M, van den Beld AW, van der Schouw YT, Grobbee DE, Lamberts SW. Effects of dehydroepiandrosterone and atamestane supplementation on frailty in elderly men. J Clin Endocrinol Metab. 2006;91(10):3988–91.

    Article  CAS  PubMed  Google Scholar 

  78. Burnett-Bowie SA, McKay EA, Lee H, Leder BZ. Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. J Clin Endocrinol Metab. 2009;94(12):4785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dias JP, Shardell MD, Carlson OD, Melvin D, Caturegli G, Ferrucci L, et al. Testosterone vs. aromatase inhibitor in older men with low testosterone: effects on cardiometabolic parameters. Andrology. 2017;5(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  80. Leder BZ, Rohrer JL, Rubin SD, Gallo J, Longcope C. Effects of aromatase inhibition in elderly men with low or borderline-low serum testosterone levels. J Clin Endocrinol Metab. 2004;89(3):1174–80.

    Article  CAS  PubMed  Google Scholar 

  81. Gregoriou O, Bakas P, Grigoriadis C, Creatsa M, Hassiakos D, Creatsas G. Changes in hormonal profile and seminal parameters with use of aromatase inhibitors in management of infertile men with low testosterone to estradiol ratios. Fertil Steril. 2012;98(1):48–51.

    Article  CAS  PubMed  Google Scholar 

  82. Saylam B, Efesoy O, Çayan S. The effect of aromatase inhibitor letrozole on body mass index, serum hormones, and sperm parameters in infertile men. Fertil Steril. 2011;95(2):809–11.

    Article  CAS  PubMed  Google Scholar 

  83. Cavallini G, Beretta G, Biagiotti G. Preliminary study of letrozole use for improving spermatogenesis in non-obstructive azoospermia patients with normal serum FSH. Asian J Androl. 2011;13(6):895–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cavallini G, Biagiotti G, Bolzon E. Multivariate analysis to predict letrozole efficacy in improving sperm count of non-obstructive azoospermic and cryptozoospermic patients: a pilot study. Asian J Androl. 2013;15(6):806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cakan M, Aldemir M, Topcuoglu M, Altuğ U. Role of testosterone/estradiol ratio in predicting the efficacy of tamoxifen citrate treatment in idiopathic oligoasthenoteratozoospermic men. Urol Int. 2009;83(4):446–51.

    Article  CAS  PubMed  Google Scholar 

  86. Shoshany O, Abhyankar N, Mufarreh N, Daniel G, Niederberger C. Outcomes of anastrozole in oligozoospermic hypoandrogenic subfertile men. Fertil Steril. 2017;107(3):589–94.

    Article  CAS  PubMed  Google Scholar 

  87. Clark RV, Sherins RJ. Treatment of men with idiopathic oligozoospermic infertility using the aromatase inhibitor, testolactone. Results of a double-blinded, randomized, placebo-controlled trial with crossover. J Androl. 1989;10(3):240–7.

    Article  CAS  PubMed  Google Scholar 

  88. Christiansen P, Skakkebaek NE. Pulsatile gonadotropin-releasing hormone treatment of men with idiopathic hypogonadotropic hypogonadism. Horm Res. 2002;57(1–2):32–6.

    CAS  PubMed  Google Scholar 

  89. Rastrelli G, Corona G, Mannucci E, Maggi M. Factors affecting spermatogenesis upon gonadotropin-replacement therapy: a meta-analytic study. Andrology. 2014;2(6):794–808.

    Article  CAS  PubMed  Google Scholar 

  90. Lunenfeld B. Historical perspectives in gonadotrophin therapy. Hum Reprod Update. 2004;10(6):453–67.

    Article  CAS  PubMed  Google Scholar 

  91. Shiraishi K, Ohmi C, Shimabukuro T, Matsuyama H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum Reprod. 2012;27(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  92. Ishikawa T, Ooba T, Kondo Y, Yamaguchi K, Fujisawa M. Assessment of gonadotropin therapy in male hypogonadotropic hypogonadism. Fertil Steril. 2007;88(6):1697–9.

    Article  CAS  PubMed  Google Scholar 

  93. Farhat R, Al-zidjali F, Alzahrani AS. Outcome of gonadotropin therapy for male infertility due to hypogonadotrophic hypogonadism. Pituitary. 2010;13(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  94. Ramasamy R, Stahl PJ, Schlegel PN. Medical therapy for spermatogenic failure. Asian J Androl. 2012;14(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  95. Bouloux PM, Nieschlag E, Burger HG, Skakkebaek NE, Wu FC, Handelsman DJ, et al. Induction of spermatogenesis by recombinant follicle-stimulating hormone (puregon) in hypogonadotropic azoospermic men who failed to respond to human chorionic gonadotropin alone. J Androl. 2003;24(4):604–11.

    Article  CAS  PubMed  Google Scholar 

  96. Warne DW, Decosterd G, Okada H, Yano Y, Koide N, Howles CM. A combined analysis of data to identify predictive factors for spermatogenesis in men with hypogonadotropic hypogonadism treated with recombinant human follicle-stimulating hormone and human chorionic gonadotropin. Fertil Steril. 2009;92(2):594–604.

    Article  CAS  PubMed  Google Scholar 

  97. Westfield G, Kaiser UB, Lamb DJ, Ramasamy R. Short-acting testosterone: more physiologic? Front Endocrinol. 2020;11:572465.

    Article  Google Scholar 

  98. Banks WA, Morley JE, Niehoff ML, Mattern C. Delivery of testosterone to the brain by intranasal administration: comparison to intravenous testosterone. J Drug Target. 2009;17(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mattern C, Hoffmann C, Morley JE, Badiu C. Testosterone supplementation for hypogonadal men by the nasal route. Aging Male. 2008;11(4):171–8.

    Article  CAS  PubMed  Google Scholar 

  100. Kavoussi PK, Machen GL, Gilkey MS, Chen SH, Kavoussi KM, Esqueda A, et al. Converting men from clomiphene citrate to Natesto for hypogonadism improves libido, maintains semen parameters, and reduces estradiol. Urology. 2021;148:141–4.

    Article  PubMed  Google Scholar 

  101. Ramasamy R, Masterson TA, Best JC, Bitran J, Ibrahim E, Molina M, et al. Effect of Natesto on reproductive hormones, semen parameters and hypogonadal symptoms: a single center, open label, single arm trial. J Urol. 2020;204(3):557–63.

    Article  PubMed  Google Scholar 

  102. Buckley WE, Yesalis CE 3rd, Friedl KE, Anderson WA, Streit AL, Wright JE. Estimated prevalence of anabolic steroid use among male high school seniors. JAMA. 1988;260(23):3441–5.

    Article  CAS  PubMed  Google Scholar 

  103. Kanayama G, Hudson JI, Pope HG Jr. Long-term psychiatric and medical consequences of anabolic-androgenic steroid abuse: a looming public health concern? Drug Alcohol Depend. 2008;98(1-2):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pope HG Jr, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: current best estimates. Am J Addict. 2014;23(4):371–7.

    Article  PubMed  Google Scholar 

  105. Hakansson A, Mickelsson K, Wallin C, Berglund M. Anabolic androgenic steroids in the general population: user characteristics and associations with substance use. Eur Addict Res. 2012;18(2):83–90.

    Article  PubMed  Google Scholar 

  106. Sagoe D, Molde H, Andreassen CS, Torsheim T, Pallesen S. The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Ann Epidemiol. 2014;24(5):383–98.

    Article  PubMed  Google Scholar 

  107. Kovac JR, Scovell J, Ramasamy R, Rajanahally S, Coward RM, Smith RP, et al. Men regret anabolic steroid use due to a lack of comprehension regarding the consequences on future fertility. Andrologia. 2015;47(8):872–8.

    CAS  PubMed  Google Scholar 

  108. Samplaski MK, Loai Y, Wong K, Lo KC, Grober ED, Jarvi KA. Testosterone use in the male infertility population: prescribing patterns and effects on semen and hormonal parameters. Fertil Steril. 2014;101(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  109. de Souza GL, Hallak J. Anabolic steroids and male infertility: a comprehensive review. BJU Int. 2011;108(11):1860–5.

    Article  PubMed  Google Scholar 

  110. World Health Organization Task Force on methods for the regulation of male fertility. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet. 1990;336(8721):955–9.

    Article  Google Scholar 

  111. Anderson RA, Wu FC. Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. II. Pharmacokinetics and pharmacodynamics of once weekly administration of testosterone enanthate. J Clin Endocrinol Metab. 1996;81(3):896–901.

    CAS  PubMed  Google Scholar 

  112. Gu Y, Liang X, Wu W, Liu M, Song S, Cheng L, et al. Multicenter contraceptive efficacy trial of injectable testosterone undecanoate in Chinese Men. J Clin Endocrinol Metab. 2009;94(6):1910–5.

    Article  CAS  PubMed  Google Scholar 

  113. Esposito M, Salerno M, Calvano G, Agliozzo R, Ficarra V, Sessa F, et al. Impact of anabolic androgenic steroids on male sexual and reproductive function: a systematic review. Panminerva Med. 2022;65(1):43–50.

    PubMed  Google Scholar 

  114. Dohle GR, Smit M, Weber RF. Androgens and male fertility. World J Urol. 2003;21(5):341–5.

    Article  CAS  PubMed  Google Scholar 

  115. Coviello AD, Matsumoto AM, Bremner WJ, Herbst KL, Amory JK, Anawalt BD, et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J Clin Endocrinol Metab. 2005;90(5):2595–602.

    Article  CAS  PubMed  Google Scholar 

  116. Hsieh TC, Pastuszak AW, Hwang K, Lipshultz LI. Concomitant intramuscular human chorionic gonadotropin preserves spermatogenesis in men undergoing testosterone replacement therapy. J Urol. 2013;189(2):647–50.

    Article  CAS  PubMed  Google Scholar 

  117. McBride JA, Coward RM. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl. 2016;18(3):373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil Steril. 1996;65(4):821–9.

    Article  Google Scholar 

  119. Liu PY, Swerdloff RS, Christenson PD, Handelsman DJ, Wang C. Rate, extent, and modifiers of spermatogenic recovery after hormonal male contraception: an integrated analysis. Lancet. 2006;367(9520):1412–20.

    Article  CAS  PubMed  Google Scholar 

  120. Wenker EP, Dupree JM, Langille GM, Kovac J, Ramasamy R, Lamb D, et al. The use of HCG-based combination therapy for recovery of spermatogenesis after testosterone use. J Sex Med. 2015;12(6):1334–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalafalla, K., Pagani, R.L., Ohlander, S.J., Niederberger, C.S. (2023). Male Hypogonadism and Fertility. In: Hohl, A. (eds) Testosterone. Springer, Cham. https://doi.org/10.1007/978-3-031-31501-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31501-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31500-8

  • Online ISBN: 978-3-031-31501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics