Skip to main content

MSDA: Monocular Self-supervised Domain Adaptation for 6D Object Pose Estimation

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Acquiring labeled 6D poses from real images is an expensive and time-consuming task. Though massive amounts of synthetic RGB images are easy to obtain, the models trained on them suffer from noticeable performance degradation due to the synthetic-to-real domain gap. To mitigate this degradation, we propose a practical self-supervised domain adaptation approach that takes advantage of real RGB(-D) data without needing real pose labels. We first pre-train the model with synthetic RGB images and then utilize real RGB(-D) images to fine-tune the pre-trained model. The fine-tuning process is self-supervised by the RGB-based pose-aware consistency and the depth-guided object distance pseudo-label, which does not require the time-consuming online differentiable rendering. We build our domain adaptation method based on the recent pose estimator SC6D and evaluate it on the YCB-Video dataset. We experimentally demonstrate that our method achieves comparable performance against its fully-supervised counterpart while outperforming existing state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, D., Heikkilä, J., Rahtu, E.: Ove6d: object viewpoint encoding for depth-based 6d object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6803–6813 (2022)

    Google Scholar 

  2. Cai, D., Heikkilä, J., Rahtu, E.: Sc6d: symmetry-agnostic and correspondence-free 6d object pose estimation. arXiv preprint arXiv:2208.02129 (2022)

  3. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  4. Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Rob. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  5. Denninger, M., et al.: Blenderproc: reducing the reality gap with photorealistic rendering. In: International Conference on Robotics: Sciene and Systems, RSS 2020 (2020)

    Google Scholar 

  6. Di, Y., Manhardt, F., Wang, G., Ji, X., Navab, N., Tombari, F.: So-pose: exploiting self-occlusion for direct 6d pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12396–12405 (2021)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Haugaard, R.L., Buch, A.G.: Surfemb: dense and continuous correspondence distributions for object pose estimation with learnt surface embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6749–6758 (2022)

    Google Scholar 

  9. He, Y., Huang, H., Fan, H., Chen, Q., Sun, J.: Ffb6d: a full flow bidirectional fusion network for 6d pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3003–3013 (2021)

    Google Scholar 

  10. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  11. Hodan, T., Barath, D., Matas, J.: Epos: estimating 6d pose of objects with symmetries. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11703–11712 (2020)

    Google Scholar 

  12. Hodaň, T., et al.: BOP challenge 2020 on 6D object localization. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 577–594. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_39

    Chapter  Google Scholar 

  13. Hu, Y., Fua, P., Wang, W., Salzmann, M.: Single-stage 6d object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2930–2939 (2020)

    Google Scholar 

  14. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6d object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3385–3394 (2019)

    Google Scholar 

  15. Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: fast 6d object pose refinement via deep texture rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3303–3312 (2021)

    Google Scholar 

  16. Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: consistent multi-view multi-object 6D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_34

    Chapter  Google Scholar 

  17. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o (n) solution to the pnp problem. Int. J. Comput. Vision 81(2), 155 (2009)

    Article  Google Scholar 

  18. Li, Z., Wang, G., Ji, X.: CDPN: coordinates-based disentangled pose network for real-time rgb-based 6-dof object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7678–7687 (2019)

    Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  20. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Vis. Comput. Graph. 22(12), 2633–2651 (2015)

    Article  Google Scholar 

  21. Park, K., Mousavian, A., Xiang, Y., Fox, D.: Latentfusion: end-to-end differentiable reconstruction and rendering for unseen object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10710–10719 (2020)

    Google Scholar 

  22. Park, K., Patten, T., Vincze, M.: Pix2pose: pixel-wise coordinate regression of objects for 6d pose estimation. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  23. Peng, S., Zhou, X., Liu, Y., Lin, H., Huang, Q., Bao, H.: Pvnet: pixel-wise voting network for 6dof object pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  24. Rad, M., Lepetit, V.: Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3836 (2017)

    Google Scholar 

  25. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Su, Y., et al.: Zebrapose: coarse to fine surface encoding for 6dof object pose estimation. arXiv preprint arXiv:2203.09418 (2022)

  27. Sundermeyer, M., et al.: Multi-path learning for object pose estimation across domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13916–13925 (2020)

    Google Scholar 

  28. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790 (2018)

  29. Wang, C., et al.: Densefusion: 6d object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)

    Google Scholar 

  30. Wang, G., Manhardt, F., Liu, X., Ji, X., Tombari, F.: Occlusion-aware self-supervised monocular 6d object pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  31. Wang, G., Manhardt, F., Shao, J., Ji, X., Navab, N., Tombari, F.: Self6D: self-supervised monocular 6D object pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 108–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_7

    Chapter  Google Scholar 

  32. Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: geometry-guided direct regression network for monocular 6d object pose estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16611–16621 (2021)

    Google Scholar 

  33. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. In: Proceedings of Robotics: Science and Systems (RSS) (2018)

    Google Scholar 

  34. Zakharov, S., Shugurov, I., Ilic, S.: Dpod: 6d pose object detector and refiner. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1941–1950 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Academy of Finland under the projects #327910 and #353139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingding Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, D., Heikkilä, J., Rahtu, E. (2023). MSDA: Monocular Self-supervised Domain Adaptation for 6D Object Pose Estimation. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics