Skip to main content

Robust and Accurate Cylinder Triangulation

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13886))

Included in the following conference series:

Abstract

In this paper we present methods for triangulation of infinite cylinders from image line silhouettes. We show numerically that linear estimation of a general quadric surface is inherently a badly posed problem. Instead we propose to constrain the conic section to a circle, and give algebraic constraints on the dual conic, that models this manifold. Using these constraints we derive a fast minimal solver based on three image silhouette lines, that can be used to bootstrap robust estimation schemes such as RANSAC. We also present a constrained least squares solver that can incorporate all available image lines for accurate estimation. The algorithms are tested on both synthetic and real data, where they are shown to give accurate results, compared to previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Åström, K., Cipolla, R., Giblin, P.J.: Generalised Epipolar constraints. Int. J. Comput. Vis. 33, 51–72 (1999)

    Google Scholar 

  2. Åström, K., Kahl, F.: Motion estimation in image sequences using the deformation of apparent contours. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 114–127 (1999)

    Google Scholar 

  3. Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Comput. Vis. Image Underst. 100(3), 416–441 (2005)

    Article  Google Scholar 

  4. Biederman, I.: Human image understanding: recent research and a theory. Comput. Vis. Graph. Image Process. 32(1), 29–73 (1985)

    Article  Google Scholar 

  5. Cox, D., Little, J., OShea, D.: Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer Science & Business Media (2013)

    Google Scholar 

  6. Dai, X., Yuan, X., Gong, H., Ma, Y.: Fully convolutional line parsing. arXiv preprint arXiv:2104.11207 (2021)

  7. De Ma, S.: Conics-based stereo, motion estimation, and pose determination. Int. J. Comput. Vision 10(1), 7–25 (1993)

    Article  Google Scholar 

  8. Frosio, I., Alzati, A., Bertolini, M., Turrini, C., Borghese, N.A.: Linear pose estimate from corresponding conics. Pattern Recogn. 45(12), 4169–4181 (2012)

    Article  Google Scholar 

  9. Frosio, I., Turrini, C., Alzati, A.: Camera re-calibration after zooming based on sets of conics. Vis. Comput. 32(5), 663–674 (2016)

    Article  Google Scholar 

  10. Gummeson, A., Engman, J., Åström, K., Oskarsson, M.: Fast and efficient minimal solvers for quadric based camera pose estimation. In: Proceedings of the International Conference on Pattern Recognition (2022)

    Google Scholar 

  11. Josephson, K., Kahl, F.: Triangulation of points, lines and conics. J. Math. Imag. Vis. 32(2), 215–225 (2008)

    Article  MathSciNet  Google Scholar 

  12. Kahl, F., Heyden, A.: Using conic correspondences in two images to estimate the epipolar geometry. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 761–766. IEEE (1998)

    Google Scholar 

  13. Kaminski, J., Shashua, A.: Multiple view geometry of algebraic curves. Int. J. Comput. Vis. 56, 195–219 (2003)

    Google Scholar 

  14. Keppel, E.: Approximating complex surfaces by triangulation of contour lines. IBM J. Res. Dev. 19(1), 2–11 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Larsson, V., Åström, K., Oskarsson, M.: Efficient solvers for minimal problems by syzygy-based reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 820–829 (2017)

    Google Scholar 

  16. Ma, S., Li, L.: Ellipsoid reconstruction from three perspective views. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 1, pp. 344–348. IEEE (1996)

    Google Scholar 

  17. Marr, D., Nishihara, H.K.: Representation and recognition of the spatial organization of three-dimensional shapes. Proceed. Royal Soc. London. Ser. B. Biol. Sci. 200(1140), 269–294 (1978)

    Google Scholar 

  18. Mei, J., Zhang, D., Ding, Y.: Monocular vision for pose estimation in space based on cone projection. Opt. Eng. 56(10), 103108 (2017)

    Article  Google Scholar 

  19. Mudigonda, P.K., Jawahar, C., Narayanan, P.: Geometric structure computation from conics. In: ICVGIP, pp. 9–14. CiteSeer (2004)

    Google Scholar 

  20. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  21. Navab, N., Appel, M.: Canonical representation and multi-view geometry of cylinders. Int. J. Comput. Vision 70(2), 133–149 (2006)

    Article  Google Scholar 

  22. Pautrat, R., Lin, J.T., Larsson, V., Oswald, M.R., Pollefeys, M.: Sold2: self-supervised occlusion-aware line description and detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11368–11378 (2021)

    Google Scholar 

  23. Quan, L.: Conic reconstruction and correspondence from two views. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 151–160 (1996)

    Article  MathSciNet  Google Scholar 

  24. Sattler, T., et al.: Benchmarking 6DoF outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018)

    Google Scholar 

  25. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  26. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  27. Semple, J.G., Kneebone, G.T.: Algebraic projective geometry. Clarendon Press (1979)

    Google Scholar 

  28. Sun, J., Cheng, X., Fan, Q.: Camera calibration based on two-cylinder target. Opt. Express 27(20), 29319–29331 (2019)

    Article  Google Scholar 

  29. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Line 2, 35–55 (2012)

    Article  Google Scholar 

  30. Winkler, A., Zagar, B.: A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object. Meas. Sci. Technol. 24(8), 084001 (2013)

    Article  Google Scholar 

  31. Xu, Y., Xu, W., Cheung, D., Tu, Z.: Line segment detection using transformers without edges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4257–4266 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ADACORSA project with funding from ECSEL JU in the H2020 Framework Programme (H2020/2014-2020) and National Authorities, under GA 876019, and the strategic research project ELLIIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gummeson .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13578 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gummeson, A., Oskarsson, M. (2023). Robust and Accurate Cylinder Triangulation. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics