Skip to main content

iDFD: A Dataset Annotated for Depth and Defocus

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Depth estimation and image deblurring from a single defocused image are fundamental tasks in Computer Vision (CV). Many methods have previously been proposed to solve these two tasks separately, using Deep Learning (DL) powerful learning capability. However, when it comes to training the Deep Neural Networks (DNN) for image deblurring or Depth from Defocus (DFD), the mentioned methods are mostly based on synthetic training datasets because of the difficulty of densely labeling depth and defocus on real images. The performance of the networks trained on synthetic data may deteriorate rapidly on real images. In this work, we present Indoor Depth from Defocus (iDFD), a Depth And Defocus Annotated dataset, which contains naturally defocused, All-in-Focus (AiF) images and dense depth maps of indoor environments. iDFD is the first public dataset to contain natural defocus and corresponding depth obtained using two appropriate sensors, DSLR and MS-Kinect camera. This dataset can support the development of DL based methods for depth estimation from defocus and image deblurring by providing the possibility to train the networks on real data instead of synthetic data. The dataset is available for download at iDFD.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860370.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ming, Y., Meng, X., Fan, C., Yu, H.: Deep learning for monocular depth estimation: a review. Neurocomputing 438, 14–33 (2021)

    Article  Google Scholar 

  2. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  3. Xiao, J., Owens, A., Torralba, A.: Sun3d: a database of big spaces reconstructed using SFM and object labels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1625–1632 (2013)

    Google Scholar 

  4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  5. Ikoma, H., Nguyen, C.M., Metzler, C.A., Peng, Y., Wetzstein, G.: Depth from defocus with learned optics for imaging and occlusion-aware depth estimation. In: 2021 IEEE International Conference on Computational Photography (ICCP), pp. 1–12, IEEE (2021)

    Google Scholar 

  6. Song, G., Lee, K.M.: Depth estimation network for dual defocused images with different depth-of-field. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1563–1567. IEEE (2018)

    Google Scholar 

  7. Maximov, M., Galim, K., Leal-Taixé, L.: Focus on defocus: bridging the synthetic to real domain gap for depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1071–1080 (2020)

    Google Scholar 

  8. Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Almansa, A., Champagnat, F.: Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks? In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 307–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_18

    Chapter  Google Scholar 

  9. Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7683–7692 (2019)

    Google Scholar 

  10. Anwar, S., Hayder, Z., Porikli, F.: Deblur and deep depth from single defocus image. Machine Vision Appl. 32(1), 1–13 (2021). https://doi.org/10.1007/s00138-020-01162-6

    Article  Google Scholar 

  11. Zhang, K., et al.: Deep image deblurring: a survey. Int. J. Comput. Vision 130(9), 2103–2130 (2022)

    Article  Google Scholar 

  12. Nazir, S., Vaquero, L., Mucientes, M., Brea, V.M., Coltuc, D.: 2hded: net for joint depth estimation and image deblurring from a single out-of-focus image. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 2006–2010. IEEE (2022)

    Google Scholar 

  13. Nazir, S., Vaquero, L., Mucientes, M., Brea, V.M., Coltuc, D.: Depth estimation and image restoration by deep learning from defocused images. arXiv preprint arXiv:2302.10730 (2023)

  14. Chang, A., et al.: Matterport3d: learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017)

  15. Vasiljevic, I., et al.: Diode: a dense indoor and outdoor depth dataset. arXiv preprint arXiv:1908.00463 (2019)

  16. Shi, J., Xu, L., Jia, J.: Just noticeable defocus blur detection and estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–665 (2015)

    Google Scholar 

  17. Zhao, W., Zhao, F., Wang, D., Lu, H.: Defocus blur detection via multi-stream bottom-top-bottom fully convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3080–3088 (2018)

    Google Scholar 

  18. D’Andrès, L., Salvador, J., Kochale, A., Süsstrunk, S.: Non-parametric blur map regression for depth of field extension. IEEE Trans. Image Process. 25(4), 1660–1673 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruan, L., Chen, B., Li, J., Lam, M.-L.: Aifnet: all-in-focus image restoration network using a light field-based dataset. IEEE Trans. Comput. Imaging 7, 675–688 (2021)

    Article  Google Scholar 

  20. Lee, J., Lee, S., Cho, S., Lee, S.: Deep defocus map estimation using domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12222–12230 (2019)

    Google Scholar 

  21. Abuolaim, A., Brown, M.S.: Defocus deblurring using dual-pixel data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 111–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_7

    Chapter  Google Scholar 

  22. Lee, J., Son, H., Rim, J., Cho, S., Lee, S.: Iterative filter adaptive network for single image defocus deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2034–2042 (2021)

    Google Scholar 

  23. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2008)

    Article  Google Scholar 

  24. Qiu, Z., Martínez-Sánchez, J., Brea, V.M., López, P., Arias, P.: Low-cost mobile mapping system solution for traffic sign segmentation using azure kinect. Int. J. Appl. Earth Obs. Geoinf. 112, 102895 (2022)

    Google Scholar 

  25. Lindner, M., Schiller, I., Kolb, A., Koch, R.: Time-of-flight sensor calibration for accurate range sensing. Comput. Vis. Image Underst. 114(12), 1318–1328 (2010)

    Article  Google Scholar 

  26. Pertuz, S., Kamarainen, J.: region-based depth recovery for highly sparse depth maps. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2074–2078. IEEE (2017)

    Google Scholar 

  27. Microsoft. Use azure Kinect sensor SDK image transformations

    Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  29. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  30. Nazir, S., Coltuc, D.: Edge-preserving smoothing regularization for monocular depth estimation. In: 2021 26th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saqib Nazir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazir, S., Qiu, Z., Coltuc, D., Martínez-Sánchez, J., Arias, P. (2023). iDFD: A Dataset Annotated for Depth and Defocus. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics