Skip to main content

Estimating the Variability of Ground-Level Annual PM2.5 and PM10 Using Land-Use Regression Model in Kolkata Municipal Corporation (KMC)

  • Chapter
  • First Online:
Environmental Management and Sustainability in India

Abstract

Air pollution becomes a priority-based subject to study in India as cardiovascular and respiratory diseases become so frequent day by day. Therefore, the availability of continuous air pollution data and analysis could offer a more feasible future plan, but the lack of adequate monitoring stations in most developing countries like India faces a new set of problems of unavailability of air quality data at very a local level. Land-use regression (LUR) has previously been demonstrated in many studies, to be a viable method of describing the link between land use and air pollution level. A number of 19 station data of PM2.5 and PM10 data and 129 meteorological and land-use predictor variable data have been used to develop the LUR model. According to the study, only three and six variables have explanatory power in the PM2.5 and PM10 models, respectively. Annual relative humidity, build-up area, distance from industry, other roads, water body and open land are the most significant in order to predict PM concentration. Adjusted R2 values for both models are high, with PM2.5 (0.865) and PM10 (0.586). For a better understanding of the spatial distribution of predicted annual PM concentration, a spatial PM concentration surface map has been developed. Low root-mean-square error (RMSE) and a decent correlation made the LUR model feasible for this study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balakrishnan, K., Sambandam, S., Ramaswamy, P., Ghosh, S., Venkatesan, V., Thangavel, G., Mukhopadhyay, K., Johnson, P., Paul, S., Puttaswamy, N., & Dhaliwal, R. S. (2015). Establishing integrated rural–urban cohorts to assess air pollution-related health effects in pregnant women, children and adults in Southern India: An overview of objectives, design and methods in the Tamil Nadu Air Pollution and Health Effects (TAPHE) study. BMJ Open, 5(6), e008090.

    Article  Google Scholar 

  • Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanaway, J. D., Beig, G., Joshi, T. K., Aggarwal, A. N., & Sabde, Y. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The global burden of disease study 2017. The lancet planetary Health, 3(1), e26–e39.

    Article  Google Scholar 

  • Biswas, T., Pal, S. C., & Saha, A. (2022). Strict lockdown measures reduced PM2. 5 concentrations during the COVID-19 pandemic in Kolkata, India. Sustainable. Water Resources Management, 8(6), 1–5.

    Google Scholar 

  • Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., Heinrich, J., Cyrys, J., Bellander, T., Lewne, M., & Brunekreef, B. (2003). Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology, 1, 228–239.

    Article  Google Scholar 

  • Daoud, J. I. (2017). Multicollinearity and regression analysis. Journal of Physics, 949(1), 012009.

    Google Scholar 

  • Fan, H., Zhao, C., & Yang, Y. (2020). A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 220, 117066.

    Article  CAS  Google Scholar 

  • Franklin, B. A., Brook, R., & Pope, C. A., III. (2015, May 1). Air pollution and cardiovascular disease. Current Problems in Cardiology, 40(5), 207–238.

    Article  Google Scholar 

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T. H., Choi, C., Cheng, W., Lai, P. C., Tian, L., Thach, T. Q., & Allen, R. (2017). Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Science of the Total Environment, 592, 306–315.

    Article  CAS  Google Scholar 

  • Miri, M., Ebrahimi Aval, H., Ehrampoush, M. H., Mohammadi, A., Toolabi, A., Nikonahad, A., Derakhshan, Z., & Abdollahnejad, A. (2017). Human health impact assessment of exposure to particulate matter: An AirQ software modeling. Environmental Science and Pollution Research, 24(19), 16513–16519.

    Article  Google Scholar 

  • Nikoonahad, A., Naserifar, R., Alipour, V., Poursafar, A., Miri, M., Ghafari, H. R., Abdolahnejad, A., Nemati, S., & Mohammadi, A. (2017). Assessment of hospitalization and mortality from exposure to PM10 using AirQ modeling in Ilam, Iran. Environmental Science and Pollution Research, 24(27), 21791–21796.

    Article  CAS  Google Scholar 

  • Ryan, P. H., & LeMasters, G. K. (2007). A review of land-use regression models for characterizing intraurban air pollution exposure. Inhalation Toxicology, 19(sup1), 127–133.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Baliyan, P., & Kumar, P. (2018). Air pollution and public health: The challenges for Delhi, India. Reviews on Environmental Health, 33(1), 77–86.

    Article  CAS  Google Scholar 

  • Shubham, S., Kumar, M., Sarma, D. K., Kumawat, M., Verma, V., Samartha, R. M., & Tiwari, R. R. (2021). Role of air pollution in chronic kidney disease: An update on evidence, mechanisms and mitigation strategies. International Archives of Occupational and Environmental Health, 30, 1–2.

    Google Scholar 

  • Son, Y., Osornio-Vargas, Á. R., O'Neill, M. S., Hystad, P., Texcalac-Sangrador, J. L., Ohman-Strickland, P., Meng, Q., & Schwander, S. (2018). Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Science of the Total Environment, 639, 40–48.

    Article  CAS  Google Scholar 

  • Wong, P. Y., Lee, H. Y., Chen, Y. C., Zeng, Y. T., Chern, Y. R., Chen, N. T., Lung, S. C., Su, H. J., & Wu, C. D. (2021). Using a land use regression model with machine learning to estimate ground level PM2. 5. Environmental Pollution, 277, 116846.

    Article  CAS  Google Scholar 

  • Yadav, I. C., & Devi, N. L. (2018). Biomass burning, regional air quality, and climate change. Earth Systems and Environmental Sciences. Edition: Encyclopedia of Environmental Health. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11022-X

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, K., Das Chatterjee, N., Bhattacharya, R.K. (2023). Estimating the Variability of Ground-Level Annual PM2.5 and PM10 Using Land-Use Regression Model in Kolkata Municipal Corporation (KMC). In: Sahu, A.S., Das Chatterjee, N. (eds) Environmental Management and Sustainability in India. Springer, Cham. https://doi.org/10.1007/978-3-031-31399-8_17

Download citation

Publish with us

Policies and ethics