Abstract
A growing number of students enrolls at universities, while capacities – above all in terms of teachers – to support their learnings stay limited. In particular, individualised feedback for students is not feasible in many courses. How can universities close this gap with the help of Artificial Intelligence (AI)?
This paper presents a use case for an AI-aided learning scenario that is expected to achieve high learning effectiveness: the acquisition of argumentation competence in the disciplines of law and economics. Emphasis is placed on good comprehensibility for the target group of students, despite the complexity of the setting. Also for this reason, the use case has been given a descriptive name, The Argueniser - Organise Your Arguments.
The focus of this paper is placed on the use case. Flanking topics are also highlighted: the concept of argumentation competence within the project, the role of feedback, and mutual learning between learners, teachers and AI. A preliminary study design illustrates the approach to measure learning effectiveness of the AI-aided learning situation. A notable aspect of the project is the involvement of the instructional design perspective already in the training phase of the AI.
DEEP WRITE is a project funded by the German Federal Ministry of Education and Research (BMBF) that aims to improve university teaching using AI. This paper is developed in the context of this project and it is based on thoughts developed within the team.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., et al.: A research agenda for hybrid intelligence: augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence. Computer 53(8), 18–28 (2020)
Anderson, L.W. (ed.): Longman, New York (2001)
Becker-Mrotzek, M., Roth, H.-J., Grießbach, J., von Dewitz, N., Schöneberger, C. (eds.): 1st edn. Kohlhammer Verlag, Stuttgart (2022)
Bourdieu, P.: The force of law: toward a sociology of the juridical field. Hastings Law J. 38(5), 814–853 (1987)
Crouch, C.H., Mazur, E.: Peer instruction: ten years of experience and results. Am. J. Phys. 69(9), 970–977 (2001)
Ebner, M., et al.: Learning experience design – zur gestaltung von technologiegestützten lernerfahrungen mit methoden der design-entwicklung. In: Wilbers, K., Hohenstein, A. (eds.) Handbuch E-Learning. Expertenwissen aus Wissenschaft und Praxis – Strategien, Instrumente, Fallstudien. Fachverlag Deutscher Wirtschaftsdienst, Köln (2021)
EDUCAUSE: Artificial intelligence in teaching and learning. 7 things you should know about artificial intelligence in teaching and learning (2017). https://library.educause.edu/-/media/files/library/2017/4/eli7143.pdf. Accessed 13 Aug 2022
Feilke, H.: Literale Praktiken und literale Kompetenz. In: Deppermann, A., Feilke, H., Linke, A. (eds.) Sprachliche und kommunikative Praktiken. De Gruyter, Berlin (2016)
Fix, M.: Texte schreiben. utb GmbH, Stuttgart (2008)
Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112 (2007). https://doi.org/10.1007/BF03078234
McKenney, S.E., Reeves, T.C.: Conducting Educational Design Research. Routledge, London (2012)
Philipp, M.: Schreiben lernen, schreibend lernen: Prinzipien des Aufbaus und der Nutzung von Schreibkompetenz. Springer eBook Collection. Springer VS, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-33253-2
Praetorius, A.K., Klieme, E., Herbert, B., et al.: Generic dimensions of teaching quality: the German framework of three basic dimensions. ZDM Math. Educ. 50, 407–426 (2018)
Reinders, H., Ditton, H., Gräsel, C., Gniewosz, B.: Empirische Bildungsforschung. VS Verlag für Sozialwissenschaften, Wiesbaden (2015)
Renkl, A.: Toward an instructionally oriented theory of example-based learning. Cogn. Sci. 38(1), 1–37 (2014)
Rodríguez-Doncel, V., Palmirani, M., Araszkiewicz, M., Casanovas, P., Pagallo, U., Sartor, G. (eds.): AI Approaches to the Complexity of Legal Systems XI-XII: AICOL International Workshops 2018 and 2020: AICOL-XI@JURIX 2018, AICOL-XII@JURIX 2020, XAILA@JURIX 2020, revised selected papers. Lecture Notes in Artificial Intelligence, vol. 13048. Springer, Cham (2021)
Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.): LNCS (LNAI), vol. 10791. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0
Sahin, M., Ifenthaler, D. (eds.): Visualizations and dashboards for learning analytics. In: Advances in Analytics for Learning and Teaching. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81222-5
Sieber, P.: Didaktik des Schreibens – vom Produkt zum Prozess und weiter zur Textkompetenz (2005)
Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J. (eds.): Springer, New York (2014). https://doi.org/10.1007/978-1-4614-3185-5
Wood, R.: A systematic review of audience response systems for teaching and learning in higher education: the student experience. Comput. Educ. 153, 103896 (2020)
Toulmin, S.E.: The Uses of Argument, 2nd edn. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Hackl, V., Müller, C. (2023). AI-Supported Acquisition of Argumentation Skills: Use Case ‘The Argueniser’. In: Brooks, E., Sjöberg, J., Møller, A.K., Edstrand, E. (eds) Design, Learning, and Innovation. DLI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-31392-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-31392-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31391-2
Online ISBN: 978-3-031-31392-9
eBook Packages: Computer ScienceComputer Science (R0)