Skip to main content

Network Analysis in AP

  • Chapter
  • First Online:
An Introduction to Artificial Psychology

Abstract

Further examples of network analysis using the directed graphs introduced in Chap. 4 are given. These networks are graphs showing the degree of relationship between variables. Given the complexity of relationships between concepts, network models are multivariate and often highly dimensional, so there is often a need to reduce the number of variables using techniques such as exploratory factor analysis and LASSO, which uses a tuning parameter specifying the threshold for the degree of removal of variables. New aspects of networks introduced in this chapter include Markov random fields, which are used to estimate the networks, the betweenness index to show the location of “hubs” in the network, clustering of nodes, and assessment of model fit and robustness using unbiased methods such as bootstrapping. One application using the connectome measuring the degree of connectivity between neurons and regions in an individual’s brain is introduced together with the size of such systems (microscopic, macroscopic) and types of connectivity. Independent component analysis can look at changes in brain networks over time. A worked example fitting and using the aspects of networks discussed earlier in the chapter to interpret the results is presented using R functions at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paul Broca

  2. 2.

    Carl Wernicke

References

  • Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras, D., Thirion, B., & Varoquaux, G. (2017). Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. NeuroImage, 147, 736–745.

    Article  PubMed  Google Scholar 

  • Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421.

    PubMed  Google Scholar 

  • Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentler, P. M., & Satorra, A. (2010). Testing model nesting and equivalence. Psychological Methods, 15(2), 111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanken, T. F., Bathelt, J., Deserno, M. K., Voge, L., Borsboom, D., & Douw, L. (2021). Connecting brain and behavior in clinical neuroscience: A network approach. Neuroscience & Biobehavioral Reviews, 130, 81–90.

    Article  Google Scholar 

  • Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205–229.

    Article  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  Google Scholar 

  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895.

    Article  PubMed  Google Scholar 

  • Borsboom, D., van der Maas, H. L., Dalege, J., Kievit, R. A., & Haig, B. D. (2021a). Theory construction methodology: A practical framework for building theories in psychology. Perspectives on Psychological Science, 16, 756–766.

    Article  PubMed  Google Scholar 

  • Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., et al. (2021b). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 58.

    Article  Google Scholar 

  • Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., et al. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149, 104011.

    Article  PubMed  Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270(5237), 802–805.

    Article  PubMed  Google Scholar 

  • Costantini, G., & Perugini, M. (2016). The network of conscientiousness. Journal of Research in Personality, 65, 68–88.

    Article  Google Scholar 

  • De Schryver, T. (2015). A non-technical introduction to text mining. In Najaarsbijeenkomst SWI, 17 november 2015. Najaarsbijeenkomst SWI.

    Google Scholar 

  • Diciccio, T. J., & Romano, J. P. (1988). A review of bootstrap confidence intervals. Journal of the Royal Statistical Society: Series B (Methodological), 50(3), 338–354.

    Google Scholar 

  • Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073–11078.

    Article  Google Scholar 

  • Efron, B. (1992). Bootstrap methods: Another look at the jackknife (pp. 569–593). Springer.

    Google Scholar 

  • Elton, A., & Gao, W. (2014). Divergent task-dependent functional connectivity of executive control and salience networks. Cortex, 51, 56–66.

    Article  PubMed  Google Scholar 

  • Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617.

    Article  PubMed  Google Scholar 

  • Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS One, 12(6), e0179891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212.

    Article  PubMed  Google Scholar 

  • Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Frontiers in Neuroscience, 13, 585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farahani, H., Azadfallah, P., Chesli, R. R., Pourmohamadreza-Tajrishi, M., Esrafilian, F., Lavasani, F. F., & Chiniforoushan, F. (2021a). Methodology of inquiring “therapy failure” in psychotherapy research: Practical guide for clinical practitioners and researchers. Psychotherapy, 7, 01.

    Google Scholar 

  • Farahani, H., Azadfallah, P., Watson, P., & Blagojević, M. (2021b). Bayesian hypothesis testing in linear models: A case study predicting mental health. https://doi.org/10.13140/RG.2.2.32071.37283

  • Farahani, H., Nápoles, G., & Azadfallah, P. (2021c). Fuzzy cognitive maps for impact assessment in psychological research: Case study of psychological well-being. In 3th international conference on modern approach in humanities and social sciences (ICMHS).

    Google Scholar 

  • Farkas, I., Ábel, D., Palla, G., & Vicsek, T. (2007). Weighted network modules. New Journal of Physics, 9, 1–18. https://doi.org/10.1088/1367-2630/9/6/180

    Article  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1), 1–47.

    Google Scholar 

  • Fonseca-Pedrero, E. (2018). Network analysis in psychology. Papeles del Psicólogo, 39(1), 1–12.

    Google Scholar 

  • Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of brain network analysis. Academic press.

    Google Scholar 

  • Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 23.

    Google Scholar 

  • Fried, E. I., & Cramer, A. O. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 999–1020.

    Article  PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.

    Article  PubMed  Google Scholar 

  • Gao, W., Gilmore, J. H., Giovanello, K. S., Smith, J. K., Shen, D., Zhu, H., & Lin, W. (2011). Temporal and spatial evolution of brain network topology during the first two years of life. PLoS One, 6(9), e25278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haslbeck, J. M., & Waldorp, L. J. (2018). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 50, 853–861.

    Article  PubMed  Google Scholar 

  • Haslbeck, J., Ryan, O., Robinaugh, D. J., Waldorp, L. J., & Borsboom, D. (2021). Modeling psychopathology: From data models to formal theories. Psychological Methods.

    Google Scholar 

  • Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017). Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence, 60, 10–25.

    Article  Google Scholar 

  • Hu, D., & Zeng, L. L. (2019). Pattern analysis of the human connectome. Springer Singapore.

    Book  Google Scholar 

  • Isvoranu, A. M., van Borkulo, C. D., Boyette, L. L., Wigman, J. T., Vinkers, C. H., Borsboom, D., & Group Investigators. (2017). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 43(1), 187–196.

    Article  PubMed  Google Scholar 

  • Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R. Frontiers in Psychology, 9, 1742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., & Sabuncu, M. R. (2019). Machine learning in resting-state fMRI analysis. Magnetic Resonance Imaging, 64, 101–121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 1393–1406.

    Article  PubMed  Google Scholar 

  • Liu, H., Lafferty, J., & Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10(10).

    Google Scholar 

  • Medaglia, J. D., Lynall, M. E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27(8), 1471–1491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201–218.

    Google Scholar 

  • Pearl, J. (2000). Causal inference without counterfactuals: Comment. Journal of the American Statistical Association, 95(450), 428–431.

    Google Scholar 

  • Pervaiz, U., Vidaurre, D., Woolrich, M. W., & Smith, S. M. (2020). Optimising network modelling methods for fMRI. NeuroImage, 211, 116604.

    Article  PubMed  Google Scholar 

  • Petruo, V. A., Mückschel, M., & Beste, C. (2018). On the role of the prefrontal cortex in fatigue effects on cognitive flexibility-a system neurophysiological approach. Scientific Reports, 8(1), 1–13.

    Article  Google Scholar 

  • Poggio, G. F., Gonzalez, F., & Krause, F. (1988). Stereoscopic mechanisms in monkey visual cortex: Binocular correlation and disparity selectivity. Journal of Neuroscience, 8(12), 4531–4550.

    Article  PubMed  Google Scholar 

  • Robinaugh, D. J., Hoekstra, R. H., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353–366.

    Article  PubMed  Google Scholar 

  • Ryan, O., Bringmann, L. F., & Schuurman, N. K. (2022). The challenge of generating causal hypotheses using network models. Structural Equation Modeling: A Multidisciplinary Journal, 29(6), 953–970.

    Article  Google Scholar 

  • Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., & Mattay, V. S. (2010). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.

    Article  PubMed  Google Scholar 

  • Shen, B., Wang, Z., & Liu, X. (2011). A Stochastic sampled-data approach to distributed $ H_ {\infty} $ filtering in sensor networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9), 2237–2246.

    Article  Google Scholar 

  • Siew, C. S., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 2019.

    Google Scholar 

  • Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT Press.

    Google Scholar 

  • Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652–660.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley, M. L., Simpson, S. L., Dagenbach, D., Lyday, R. G., Burdette, J. H., & Laurienti, P. J. (2015). Changes in brain network efficiency and working memory performance in aging. PLoS One, 10(4), e0123950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan, E. D. (2022). Neurodevelopmental factors contributing to substance use and mental illness (Doctoral dissertation, Dartmouth College).

    Google Scholar 

  • ten Donkelaar, H. J., ten Donkelaar, H. J., Broman, J., & van Domburg, P. (2020). The somatosensory system. In Clinical neuroanatomy: Brain circuitry and its disorders (pp. 171–255).

    Chapter  Google Scholar 

  • Tibshirani, R. (1996). A comparison of some error estimates for neural network models. Neural Computation, 8(1), 152–163.

    Article  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  PubMed  Google Scholar 

  • Van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(1), 1–10.

    Google Scholar 

  • Van Den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. H. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624.

    Article  PubMed  Google Scholar 

  • Williams, D. R., & Rast, P. (2020). Back to the basics: Rethinking partial correlation network methodology. British Journal of Mathematical and Statistical Psychology, 73(2), 187–212.

    Article  PubMed  Google Scholar 

  • Wu, K., Taki, Y., Sato, K., Hashizume, H., Sassa, Y., Takeuchi, H., et al. (2013). Topological organization of functional brain networks in healthy children: Differences in relation to age, sex, and intelligence. PLoS One, 8(2), e55347.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farahani, H., Blagojević, M., Azadfallah, P., Watson, P., Esrafilian, F., Saljoughi, S. (2023). Network Analysis in AP. In: An Introduction to Artificial Psychology. Springer, Cham. https://doi.org/10.1007/978-3-031-31172-7_5

Download citation

Publish with us

Policies and ethics