Skip to main content

Artificial Psychology

  • Chapter
  • First Online:
An Introduction to Artificial Psychology

Abstract

Various key concepts are introduced here, including artificial intelligence and explainable artificial intelligence and their implementation in artificial psychology in model building. We recommend the use of a training set to estimate models and a separate set of data to test, in an unbiased manner, the predictive validity of the model obtained from the training set. This leads us to the increasingly popular techniques of machine learning and deep learning, where the model updates and learns from the data and is able to explore relationships that were not explicitly fed into the model so it relies less on pre-programmed a priori assumptions. These differ from classical statistical inference, where only pre-defined relationships are included in the model. We allude to deductionism and inductivism and look at assumptions underlying these approaches including multicollinearity. A good model should be parsimionious, easy to interpret, explainable, and understandable. We refer to three stages in the fitting of a model: the pre-model stage, the intrinsic stage, and the post-model interpretability stage and to different types of machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

    Article  Google Scholar 

  • Aguinis, H., & Solarin, A. (2019). Transparency and replicability in qualitative research: The case of interviews with elite informants. Strategic Management, 40(8), 1291–1315. https://doi.org/10.1002/smj.3015

    Article  Google Scholar 

  • Aslam, N., Khan, I. U., Mirza, S., AlOwayed, A., Anis, F. M., Aljuaid, R. M., & Baageel, R. (2022). Interpretable machine learning models for malicious domains detection using explainable artificial intelligence (XAI). Sustainability, 14, 7375. https://doi.org/10.3390/su14127375

    Article  Google Scholar 

  • Borsboom, D., van der Maas, H. L., Dalege, J., Kievit, R. A., & Haig, B. D. (2021a). Theory construction methodology: A practical framework for building theories in psychology. Perspectives on Psychological Science, 16, 756–766.

    Article  PubMed  Google Scholar 

  • Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., et al. (2021b). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 58.

    Article  Google Scholar 

  • Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. AI Magazine, 26(4), 53–53.

    Google Scholar 

  • Crabbe, & Schaar. (2022). Proceedings of the 39th international conference on machine learning, PMLR 162, 2022.

    Google Scholar 

  • Crowder, J., & Friess, S. (2010). Artificial neural emotions and emotional memory. Ic-Ai, 373–378.

    Google Scholar 

  • Dua, D., & Graff, C. (2017) UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php

  • Eronen, M. I., & Bringmann, L. F. (2021). Perspectives on Psychological Science, 16(4), 779–788. https://doi.org/10.1177/1745691620970586

    Article  PubMed  PubMed Central  Google Scholar 

  • Farahani, H. A., Kazemi, Z., Aghamohamadi, S., Bakhtiarvand, F., & Ansari, M. (2011). Examining mental health indices in students using Facebook in Iran. Procedia-Social and Behavioral Sciences, 28, 811–814.

    Article  Google Scholar 

  • Fielder, E., Von Zglinicki, T., & Jurk, D. (2017). The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? Journal of Alzheimer’s Disease, 60(s1), S107–S131.

    Article  PubMed  Google Scholar 

  • Gianfagna, L., & Di Cecco, A. (2021a). Model-agnostic methods for XAI. In Explainable AI with python (pp. 81–113). Springer.

    Chapter  Google Scholar 

  • Gianfagna, L., & Di Cecco, A. (2021b). Explainable AI with python (pp. 1–202). Springer.

    Google Scholar 

  • Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018, October). Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th international conference on data science and advanced analytics (DSAA) (pp. 80–89). IEEE.

    Chapter  Google Scholar 

  • Grazioli, S., Rosi, E., Mauri, M., Crippa, A., Tizzoni, F., Tarabelloni, A., et al. (2021). Patterns of response to methylphenidate Administration in Children with ADHD: A personalized medicine approach through clustering analysis. Children, 8(11), 1008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaganathan, K., Rehman, M. U., Tayara, H., & Chong, K. T. (2022). XML-CIMT: Explainable machine learning (XML) model for predicting chemical-induced mitochondrial toxicity. International Journal of Molecular Sciences, 23, 15655. https://doi.org/10.3390/ijms232415655

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipkova, J., Chen, R. J., Chen, B., Lu, M. Y., Barbieri, M., Shao, D., et al. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 40(10), 1095–1110.

    Article  PubMed  Google Scholar 

  • Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explain ability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. Journal of Biomedical Informatics, 113, 103655.

    Article  PubMed  Google Scholar 

  • Mischel, W. (2008). The toothbrush problem. APS Observer, 21.

    Google Scholar 

  • Pratt, M. G., Lepisto, D., & Dane, E. (2019). The hidden side of trust: Supporting and sustaining leaps of faith among firefighters. Administrative Science Quarterly, 64, 398–434. ISI.

    Article  Google Scholar 

  • Rudin, S. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vélez, J. I. (2021a). Machine learning psychology: Advocating for a data-driven approach. International Journal of Psychological Research, 14(1), 6–11. https://doi.org/10.21500/20112084.5365

    Article  PubMed  PubMed Central  Google Scholar 

  • Vélez, J. I. (2021b). Machine learning based psychology: Advocating for A data-driven approach. International Journal of Psychological Research, 14(1), 6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine learning and deep learning methods for cybersecurity. IEEE Access, 6, 35365–35381.

    Article  Google Scholar 

  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., & Chen, F. (2018). Human and machine learning: Visible, explainable, trustworthy and transparent; human–computer interaction series. Springer; ISBN 978-3-319-90402-3.

    Book  Google Scholar 

  • Zhou, B., Sun, Y., Bau, D., & Torralba, A. (2018). Interpretable basis decomposition for visual explanation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 119–134).

    Google Scholar 

  • Zhou, J., Gandomi, A. H., Chen, F., & Holzinger. (2021). A. Evaluating the quality of machine learning explanations: A survey on methods and metrics. Electronics, 10, 593. https://doi.org/10.3390/electronics10050593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farahani, H., Blagojević, M., Azadfallah, P., Watson, P., Esrafilian, F., Saljoughi, S. (2023). Artificial Psychology. In: An Introduction to Artificial Psychology. Springer, Cham. https://doi.org/10.1007/978-3-031-31172-7_2

Download citation

Publish with us

Policies and ethics