Skip to main content

Technological Improvements on Facial Plastic, Head, and Neck Procedures

  • Chapter
  • First Online:
Cosmetic and Reconstructive Facial Plastic Surgery

Abstract

Facial plastic, head, and neck surgeries have come along a long way from the time they were introduced. Advancement of technology in a variety of directions, including, but not limited to, advanced manufacturing, robotics, biomechanics, cellular phone applications, materials, internet, augmented reality, and, virtual reality, as well as advanced computing techniques such as machine learning, deep learning, and artificial intelligence, have included more sophistication to these surgical procedures but yet also increased the complexity of these procedures. A variety of improvement opportunities for facial plastic, head, and neck surgeries, including advanced manufacturing, robotics, biomechanics, mathematical optimization, advancement of technologies, and artificial intelligence, are outlined. In addition, psychological factors that can play a crucial role in these surgical procedures are also briefly explained. The most important recommendation that no other researcher has investigated (to the best of our knowledge) is the impact of psychological support on patients prior to undertaking surgery. While one may believe that it would be impossible to heal patients without surgery, the power of brain and positive thinking cannot be underestimated, and limits of such investigation should be tested through research and data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Truden, A., & Tokgöz, E. (2022). Surgical approaches used for total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  2. Truden, A., & Tokgöz, E. (2022). Preexisting conditions leading to total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  3. Truden, A., & Tokgöz, E. (2022). Surgical approach comparisons in total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  4. Truden, A., & Tokgöz, E. (2022). Perioperative patient care for total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  5. Truden, A., & Tokgöz, E. (2022). Complications of total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  6. Truden, A., & Tokgöz, E. (2022). Medical improvement suggestions for total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  7. Tokgöz, E., & Truden, A. (2022). Biomechanics of total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  8. Tokgöz, E., & Truden, A. (2022). All-inclusive impact of robotics applications on THA: Overall impact of robotics on total hip arthroplasty patients from manufacturing of implants to recovery after surgery. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  9. Tokgöz, E., & Truden, A. (2022). Biomechanical success of traditional versus robotic-assisted total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  10. Tokgöz, E., & Truden, A. (2022). Optimization for total hip arthroplasty applications. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  11. Tokgöz, E., & Truden, A. (2022). Artificial intelligence, deep learning, and machine learning applications in total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  12. Tokgöz, E. (2022). Advancing engineering of total hip arthroplasty. In Total hip arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 9783031089268. https://link.springer.com/chapter/10.1007/978-3-031-08927-5_6

    Google Scholar 

  13. González-Henríquez, C. M., Sarabia-Vallejos, M. A., & Rodriguez-Hernandez, J. (2019). Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 94, 57–116., ISSN 0079-6700. https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  Google Scholar 

  14. Goksu, T. D., et al. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7, 164.

    Article  Google Scholar 

  15. Martola, M., Lindqvist, C., Hanninen, H., & Al-Sukhun, J. (2007). Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 80, 345–352.

    Article  Google Scholar 

  16. Huang, M. F., Alfi, D., Alfi, J., & Huang, A. T. (2019). The use of patient-specific implants in Oral and maxillofacial surgery, Oral Maxillofac. The Surgical Clinics of North America, 31, 593–600.

    Google Scholar 

  17. Wong, R. C., Tideman, H., Kin, L., & Merkx, M. A. (2010). Biomechanics of mandibular recon-struction: A review. International Journal of Oral and Maxillofacial Surgery, 39, 313–319.

    Article  Google Scholar 

  18. Memon, A. R., Wang, E., Hu, J., Egger, J., & Chen, X. (2020). A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Re-View of Medical Devices, 17, 345–356.

    Article  Google Scholar 

  19. Su, Y., Sun, Y., Hosny, M., Gao, W., & Fu, Y. (2022). Facial landmark-guided surface matching for image-to-patient registration with an RGB-D camera. The International Journal of Medical Robotics and Computer Assisted Surgery, 18(3), e2373.

    Article  Google Scholar 

  20. Van Mulken, T. J. M., Schols, R. M., Scharmga, A. M. J., Winkens, B., Cau, R., Schoenmakers, F. B. F., et al. (2020). First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: A randomized pilot trial. Nature, 11, 757.

    Google Scholar 

  21. Butler, P. E., Ghali, S., & Kalaskar, D. K. (2016). Textbook of plastic and reconstructive surgery (p. 488). Ucl Press.

    Google Scholar 

  22. Konczalik, W., Nikkhah, D., & Mosahebi, A. (2017). Applications of smartphone thermal camera imaging system in onitoring of the deep inferior epigastric perforator flap for breast reconstruction. Microsurgery, 37, 457–458. https://doi.org/10.1002/micr

    Article  Google Scholar 

  23. Koumoullis, H., Burley, O., & Kyzas, P. (2020). Patient-specific soft tissue reconstruction: An IDEAL stage I report of hemiglossectomy reconstruction and introduction of the PANSOFOS flap. The British Journal of Oral & Maxillofacial Surgery, 58(6), 681–686.

    Article  Google Scholar 

  24. Yu, J. C., Buchman, S. R., Gosain, A. K., et al. (2021). Basic biomechanics for craniofacial surgeons: The responses of alloplastic materials and living tissues to mechanical forces. FACE., 2(4), 446–461. https://doi.org/10.1177/27325016211060232

    Article  Google Scholar 

  25. Saad, A., Winters, R., Wise, M. W., Dupin, C. L., & St Hilaire, H. (2013). Virtual surgical planning in complex composite maxillofacial reconstruction. Plastic and Reconstructive Surgery, 132(3), 626–633.

    Article  Google Scholar 

  26. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.

    Article  MathSciNet  MATH  Google Scholar 

  27. Musafer, H., Abuzneid, A., Faezipour, M., & Mahmood, A. (2020). An enhanced design of sparse autoencoder for latent features extraction based on trigonometric simplexes for network intrusion detection systems. Electronics, 9(2), 259.

    Article  Google Scholar 

  28. Musafer, H., Tokgoz, E., & Mahmood, A. (2022). High-dimensional normalized data profiles for testing derivative-free optimization algorithms. PeerJ Computer Science, 8, e960.

    Article  Google Scholar 

  29. Yeong, E.-K., Hsiao, T.-C., Chiang, H. K., & Lin, C.-W. (2005). Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns, 31(4), 415–420.

    Article  Google Scholar 

  30. Shepp, L. A., & Logan, B. F. (1974). The Fourier reconstruction of a head section. IEEE Transactions on Nuclear Science, 21(3), 21–43.

    Article  Google Scholar 

  31. Guo, P., Hu, M., & Jia, Y. (Eds.). (2006, November). International conference on computational intelligence and security; Guangzhou, China (pp. 1865–1868). IEEE. https://doi.org/10.1109/ICCIAS.2006.295389

    Book  Google Scholar 

  32. Cierniak, R. (2008). A 2D approach to tomographic image reconstruction using A hopfield-type neural network. Artificial Intelligence in Medicine, 43, 113–125.

    Article  Google Scholar 

  33. Cierniak, R. (2008). A new approach to image reconstruction from projections using A recurrent neural network. International Journal of Applied Mathematics and Computer Science, 18, 147–157.

    Article  MathSciNet  Google Scholar 

  34. Cierniak, R. (2009). New neural network algorithm for image reconstruction from fan-beam projections. Neurocomputing, 72, 3238–3244.

    Article  Google Scholar 

  35. Cierniak, R., et al. (2010). A statistical tailored image reconstruction from projections method. In G. Phillips-Wren, L. C. Jain, K. Nakamatsu, et al. (Eds.), Advances in intelligent decision technologies (pp. 181–190). Springer.

    Chapter  Google Scholar 

  36. Cierniak, R. (2010). A statistical approach to image reconstruction from projections problem using recurrent neural network. In K. Diamantaras, W. Duch, & L. S. Iliadis (Eds.), ICANN 2010 (pp. 138–141). Springer.

    Google Scholar 

  37. Cierniak, R. (2011). Neural network algorithm for image reconstruction using the “grid-friendly” projections. Australasian Physical & Engineering Sciences in Medicine, 34, 375–389.

    Article  Google Scholar 

  38. Cierniak, R., & Lorent, A. (2012). A neuronal approach to the statistical image reconstruction from projections problem. In N.-T. Nguyen, K. Hoang, & P. Jȩdrzejowicz (Eds.), ICCCI 2012 (pp. 344–353). Springer.

    Google Scholar 

  39. Würfl, T., Ghesu, F. C., Christlein, V., Maier, A., et al. (2016). Deep learning computed tomography. In S. Ourselin, L. Joskowicz, M. R. Sabuncu, et al. (Eds.), MICCAI 2016 (pp. 432–440). Springer.

    Google Scholar 

  40. Adler, J., & Öktem, O. (2017). Solving ill-posed inverse problems using iterative deep neural networks. Inverse Problems, 33, 124007.

    Article  MathSciNet  MATH  Google Scholar 

  41. Adler, J., & Oktem, O. (2018). Learned primal-dual reconstruction. IEEE Transactions on Medical Imaging, 37, 1322–1332.

    Article  Google Scholar 

  42. Zhang, J., & Zuo, H. (2019). Iterative CT image reconstruction using neural network optimization algorithms. In H. Bosmans, G.-H. Chen, & T. Gilat Schmidt (Eds.), Medical imaging 2019: Physics of medical imaging (p. 1094863). SPIE.

    Google Scholar 

  43. Kang, T. S., Vrabec, J. T., Giddings, N., & Terris, D. J. (2002). Facial nerve grading systems (1985-2002): Beyond the house-Brackmann scale. Otology & Neurotology, 23, 767–771.

    Article  Google Scholar 

  44. Fattah, A. Y., Gurusinghe, A. D., Gavilan, J., et al. (2015). Sir Charles Bell Society. Facial nerve grading instruments: Systematic review of the literature and suggestion for uniformity. Plastic and Reconstructive Surgery, 135, 569–579.

    Article  Google Scholar 

  45. Kiranantawat, K., Sitpahul, N., Taeprasartsit, P., Constantinides, J., Kruavit, A., Srimuninnimit, V., et al. (2014 Jul). The first smartphone application for microsurgery monitoring: SilpaRamanitor. Plastic Reconstruction Surgery, 134(1), 130–139.

    Article  Google Scholar 

  46. Bradbury, E. T., Simons, W., & Sanders, R. (2006). Psychological and social factors in reconstructive surgery for hemi-facial palsy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 59, 272–278.

    Article  Google Scholar 

  47. Springer, B. D., & Sotile, W. M. (2020). The psychology of total joint arthroplasty. Journal of Arthroplasty, 36(6S), S46–S49.

    Article  Google Scholar 

  48. Sosa, D., Carola, N., Levitt, S., Patel, V., & Tokgöz, E. (2023). Surgical approaches used for total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  49. Tokgöz, E., Levitt, S., Patel, V., Carola, N., & Sosa, D. (2023). Biomechanics of total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  50. Tokgöz, E., Carola, N., Levitt, S., Patel, V., & Sosa, D. (2023). Robotics applications in total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  51. Tokgöz, E., Sosa, D., Carola, N., Levitt, S., & Patel, V. (2023). Impact of manufacturing on total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  52. Tokgöz, E., Patel, V., Carola, N., Sosa, D., & Levitt, S. (2023). Optimization investigations on total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  53. Tokgöz, E., Patel, V., Sosa, D., Levitt, S., & Carola, N. (2023). Artificial intelligence, deep learning, and machine learning applications in total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  54. Tokgöz, E. (2023). Advancing engineering of total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Chapter  Google Scholar 

  55. Tokgöz, E., & Marina, A. C. (2023). Biomechanics of facial plastic surgery applications. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  56. Tokgöz, E., & Marina, A. C. (2023). Applications of artificial intelligence, machine learning, and deep learning on facial plastic surgeries. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  57. Tokgöz, E., & Marina, A. C. (2023). Robotics applications in facial plastic surgeries. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  58. Tokgöz, E., & Marina, A. C. (2023). Engineering psychology of facial plastic surgery patients. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  59. Levitt, S., Patel, V., Sosa, D., Carola, N., & Tokgöz, E. (2023). Preexisting conditions leading to total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  60. Sosa, D., Carola, N., Patel, V., Levitt, S., & Tokgöz, E. (2023). Surgical approach comparison in total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  61. Sosa, D., Carola, N., Patel, V., Levitt, S., & Tokgöz, E. (2023). Perioperative patient care for total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  62. Levitt, S., Patel, V., Carola, N., Sosa, D., & Tokgöz, E. (2023). Complications of total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  63. Carola, N., Patel, V., Levitt, S., Sosa, D., & Tokgöz, E. (2023). Ergonomics of total knee arthroplasty. In Total knee arthroplasty: Medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3-031-31099-7.

    Google Scholar 

  64. Marina, A. C., & Tokgöz, E. (2023). Non-surgical facial aesthetic procedures. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  65. Marina, A. C., & Tokgöz, E. (2023). Aesthetic surgery of the upper face and cheeks. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  66. Marina, A. C., & Tokgöz, E. (2023). Aesthetic surgery of the nose and lower face. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  67. Marina, A. C., Donofrio, G., & Tokgöz, E. (2023). Surgical reconstruction of craniofacial malformations. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  68. Marina, A. C., & Tokgöz, E. (2023). Surgical reconstruction of craniofacial trauma and burns. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  69. Marina, A. C., & Tokgöz, E. (2023). Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

  70. Musafer, H., & Tokgöz, E. (2023). A facial wrinkle detection by using deep learning with an efficient optimizer. In Cosmetic and reconstructive facial plastic surgery: A review of medical and biomedical engineering and science concepts. Springer. ISBN #: 978-3031311673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tokgöz, E. (2023). Technological Improvements on Facial Plastic, Head, and Neck Procedures. In: Cosmetic and Reconstructive Facial Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-31168-0_12

Download citation

Publish with us

Policies and ethics