Skip to main content

Weyl’s Law under Minimal Assumptions

  • Chapter
  • First Online:
From Complex Analysis to Operator Theory: A Panorama

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 291))

Abstract

We show that Weyl’s law for the number and the Riesz means of negative eigenvalues of Schrödinger operators remains valid under minimal assumptions on the potential, the vector potential and the underlying domain.

Dedicated to the memory of Sergey Naboko

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Berezin, Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36, 1134–1167 (1972)

    MathSciNet  Google Scholar 

  2. M.Sh. Birman, A. Laptev, The negative discrete spectrum of a two-dimensional Schrödinger operator. Commun. Pure Appl. Math. 49(9), 967–997 (1996)

    Article  MATH  Google Scholar 

  3. W.D. Evans, R.T. Lewis, H. Siedentop, J.P. Solovej, Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semi-classical limit. Ark. Mat. 34(2), 265–283 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.L. Frank, Remarks on eigenvalue estimates and semigroup domination, in Spectral and Scattering Theory for Quantum Magnetic Systems. Contemporary Mathematics, vol. 500 (American Mathematical Society, Providence, RI, 2009), pp. 63–86

    Google Scholar 

  5. R.L. Frank, The Lieb-Thirring inequalities: recent results and open problems, in Nine Mathematical Challenges—an Elucidation, ed. by A. Kechris et al. Proceedings of Symposia in Pure Mathematics, vol. 104 (American Mathematical Society, Providence, RI, 2021), pp. 45–86

    Google Scholar 

  6. R.L. Frank, L. Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, in Mathematical Results in Quantum Physics (World Scientific Publishing, Hackensack, NJ, 2011), pp. 138–147

    MATH  Google Scholar 

  7. R.L. Frank, L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. 712, 1–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. R.L. Frank, A. Laptev, T. Weidl, Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities. Cambridge Studies in Advanced Mathematics, vol. 200. (Cambridge University Press, Cambridge, 2023)

    Google Scholar 

  9. R.L. Frank, S. Larson, Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain. J. Reine Angew. Math. 766, 195–228 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.L. Frank, C. Hainzl, S. Naboko, R. Seiringer, The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17(4), 559–567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Laptev, T. Weidl, Sharp Lieb–Thirring inequalities in high dimensions. Acta Math. 184(1), 87–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Leinfelder, C.G. Simader, Schrödinger operators with singular magnetic vector potentials. Math. Z. 176(1), 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. E.H. Lieb, Thomas–Fermi and related theories of atoms and molecules. Rev. Modern Phys. 53, 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. E.H. Lieb, M. Loss, Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  15. E.H. Lieb, B. Simon, The Thomas–Fermi theory of atoms, molecules and solids. Adv. in Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Naimark, M. Solomyak, Regular and pathological eigenvalue behavior for the equation \(-\lambda u''=Vu\) on the semiaxis. J. Funct. Anal. 151(2), 504–530 (1997)

    Google Scholar 

  17. M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. (Academic Press, Inc., New York, 1980)

    Google Scholar 

  18. G.V. Rozenbljum, On the distribution of eigenvalues of the first boundary value problem in unbounded regions. Dokl. Akad. Nauk SSSR 200(5), 1034–1036 (1971)

    MathSciNet  Google Scholar 

  19. G.V. Rozenbljum, The eigenvalues of the first boundary value problem in unbounded domains. Mat. Sb. (N.S.) 89(131)(2), 234–247 (1972). English translation: Math. USSR Sb. 18, 235–248 (1972)

    Google Scholar 

  20. G.V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators. Dokl. Akad. Nauk SSSR 202, 1012–1015 (1972). English translation: Soviet Math. Dokl. 13, 245–249 (1972)

    Google Scholar 

  21. G.V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators. Izv. Vysš. Učebn. Zaved. Matematika 164(1), 75–86 (1976). English translation: Soviet Math. (Iz. VUZ) 20(1), 63–71 (1976)

    Google Scholar 

  22. J.P. Solovej, W.L. Spitzer, A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3), 383–420 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.E. Thirring, A lower bound with the best possible constant for Coulomb Hamiltonians. Commun. Math. Phys. 79, 1–7 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Partial support through U.S. National Science Foundation grant DMS-1954995 and through the German Research Foundation grant EXC-2111-390814868 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frank, R.L. (2023). Weyl’s Law under Minimal Assumptions. In: Brown, M., et al. From Complex Analysis to Operator Theory: A Panorama. Operator Theory: Advances and Applications, vol 291. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31139-0_20

Download citation

Publish with us

Policies and ethics