Skip to main content

Convolutional Autoencoder for Filtering of Power-Line Interference with Variable Amplitude and Frequency: Study of 12-Lead PTB-XL ECG Database

  • Conference paper
  • First Online:
Recent Contributions to Bioinformatics and Biomedical Sciences and Engineering (BioInfoMed 2022)

Abstract

This study aims to explore a new deep learning strategy for electrocardiogram (ECG) denoising under adverse conditions of non-stationary power-line interference (PLI) with amplitude changes or nominal frequency deviations. The study presents an exhaustive training strategy of deep convolutional autoencoder (CAE), while input with one of the largest PhysioNet 12-lead ECG databases contaminated by simulated sinusoidal PLI noise with augmented settings. Twelve ECG leads (I, II, III, aVR, aVL, aVF, V1–V6) from 14890 PTB-XL records, divided patient-wise to training (50%, 7441 records), validation (20%, 2979 records) and test (30%, 4470 records) are superimposed by PLI with five signal-to-noise ratios (SNR) (–2.5, 0, 2.5, 5, 7.5 dB), nine frequencies (48, 48.5, 49, 49.5, 50, 50.5, 51, 51.5, 52 Hz), 12 amplitude slew rates ±(50, 100, 250, 500, 750, 1000 μV/s), and 14 frequency slew rates ±(0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2 Hz/s). CAE receptive field inputs one ECG lead with 1024 samples (2.048 s for 500 Hz sampling rate). CAE architecture is designed with seven 1D-convolutional layers, including three encoder layers (filters x kernel size = 16 × 8, 8 × 8, 8 × 8) and four decoder layers (8 × 8, 8 × 8, 16 × 8, 1 × 8) with linear activation function and same padding. CAE non-linear operations for max-pooling and up-sampling (pool size of 2) follow each encoder and decoder convolutional layers, respectively. Adam optimizer and mean squared error loss function are applied for CAE training over 250 epochs. The quality of clean ECG reconstruction in CAE output is evaluated by root-mean-square error (RMSE), percentage-root-mean-square difference (PRD) and improvement in signal-to-noise ratio (SNRimp). Statistical test results for denoising of all 12 ECG leads present median RMSE = 5.3 μV, PRD = 3.5%, SNRimp = 22–32 dB for SNR = –2.5 to 7.5 dB. The results do not substantially change for PLI frequencies 48–52 Hz, amplitude slew rates up to ±1000 μV/s and frequency slew rates up to ±0.2 Hz/s with median value divergence of \(\Delta \)RMSE < 2 \(\upmu{\text{V}} \), \(\Delta \)PRD < 1.5%, \(\Delta \)SNRimp ≤ 3 dB. The observed performance stability justifies the deep learning strategy for training a CAE with generalizable application for denoising of ECG signals with non-stationary PLI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradley, W., et al.: Electrocardiogram in Clinical Medicine, 1st edn. John Wiley & Sons Ltd., Hoboken, NJ, US (2020). https://doi.org/10.1002/9781118754511

  2. Sörnmo, L., Laguna P.: Chapter 6 – the electrocardiogram—a brief background. Bioelectr. Signal Process. Card. Neurol. Appl. 2005, 411–452 (2005)

    Google Scholar 

  3. Dobrev, D., Neycheva, T.: High-quality biopotential acquisition without a reference electrode: power-line interference reduction by adaptive impedance balancing in a mixed analog–digital design. Med. Biol. Eng. Comput. 60, 1801–1814 (2022)

    Article  Google Scholar 

  4. IEC 60601-2-25:2011: Medical Electrical Equipment - Part 2-25: particular requirements for the basic safety and essential performance of electrocardiographs, 2nd edn., International Electrotechnical Commission, pp. 1–196 (2011)

    Google Scholar 

  5. Dobrev, D., Neycheva, T., Mudrov, N.: High-Q comb filter for mains interference suppression. Annu. J. Electron. 3(1), 47–49 (2009)

    Google Scholar 

  6. Tabakov, S., Iliev, I., Krasteva, V.: Online digital filter and QRS detector applicable in low resource ECG monitoring systems. Ann. Biomed. Eng. 36(11), 1805–1815 (2008)

    Article  Google Scholar 

  7. Levkov, C., Mihov, G., Ivanov, R., et al.: Removal of power-line interference from the ECG: a review of the subtraction procedure. Biomed. Eng. OnLine 4, 50 (2005). https://doi.org/10.1186/1475-925X-4-50

    Article  Google Scholar 

  8. Dotsinsky, I., Stoyanov, T., Mihov, G.: Power-line interference removal from high sampled ECG signals using modified version of the subtraction procedure. Int. J. Bioautom. 24(4), 381–392 (2020)

    Article  Google Scholar 

  9. Stoyanov, T., Christov, I., Jekova, I., Krasteva, V.: Online adaptive filter for mains interference suppression in diagnostic electrocardiographs: cases of amplitude and frequency deviation. Annu. J. Electron. 4, 150–153 (2010)

    Google Scholar 

  10. Rahman, M.Z.U., Karthik, G.V.S., Fathima, S.Y., Lay-Ekuakille, A.: An efficient cardiac signal enhancement using time–frequency realization of leaky adaptive noise cancelers for remote health monitoring systems. Measurement 46(10), 3815–3835 (2013)

    Article  Google Scholar 

  11. Faiz, M., Kale, I.: Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array 14, 100133 (2022)

    Article  Google Scholar 

  12. Chiang, H., Hsieh, Y., Fu, S., et al.: Noise reduction in ECG signals using fully convolutional denoising autoencoders. IEEE Access 7, 60806–60813 (2019)

    Article  Google Scholar 

  13. Dasan, E., Panneerselvam, I.: A novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTM. Biomed. Signal Process. Control 63, 102225 (2021)

    Article  Google Scholar 

  14. Xiong, P., Wang, H., Liu, M., et al.: A stacked contractive denoising auto-encoder for ECG signal denoising. Physiol. Meas. 37, 2214–2230 (2016)

    Article  Google Scholar 

  15. Casas, L., Klimmek, A., Navab, N., Belagiannis, V.: Adversarial signal denoising with encoder-decoder networks. In: 28th European Signal Processing Conference, pp. 1467–1471. IEEE, Amsterdam, Netherlands (2021)

    Google Scholar 

  16. Wagner, P., Strodthoff, N., Bousseljot, R.D., et al.: A large publicly available ECG dataset. Sci. Data 7, 154 (2020)

    Article  Google Scholar 

  17. Němcová, A., Smíšek, R., Maršánová, L., Smital, L., Vítek, M.: A comparative analysis of methods for evaluation of ECG signal quality after compression. Biomed. Res. Int. 2018, 1868519 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian National Science Fund, grant КП-06-H42/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vessela Krasteva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, K., Jekova, I., Krasteva, V. (2023). Convolutional Autoencoder for Filtering of Power-Line Interference with Variable Amplitude and Frequency: Study of 12-Lead PTB-XL ECG Database. In: Sotirov, S., Pencheva, T., Kacprzyk, J., Atanassov, K.T., Sotirova, E., Ribagin, S. (eds) Recent Contributions to Bioinformatics and Biomedical Sciences and Engineering. BioInfoMed 2022. Lecture Notes in Networks and Systems, vol 658. Springer, Cham. https://doi.org/10.1007/978-3-031-31069-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31069-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31068-3

  • Online ISBN: 978-3-031-31069-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics