Skip to main content

Comparison of Docking Scoring Functions by InterCriteria Analysis on a Set of Protein Targets Related to Alzheimer and Parkinson Diseases

  • Conference paper
  • First Online:
Recent Contributions to Bioinformatics and Biomedical Sciences and Engineering (BioInfoMed 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 658))

Included in the following conference series:

  • 122 Accesses

Abstract

Nowadays, the pharmaceutical industry extensively uses in silico drug design methods to deal with the enormously wide chemical space of druggable compounds and to reduce the R&D expenses. Having a significant number of tools for structure-based in silico screening, the aim of this study was to assess the putative consonance between the docking scores obtained by different scoring functions, which could provide a basis for reduction of the computational cost and/or for optimal choice of scoring functions.

The proteins used in the study were acetylcholine esterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B), enzymes related to the treatment of symptoms of Alzheimer and Parkinson diseases and potential subjects for inclusion in “single drug – multiple targets” research. The 11085 small molecules (ligands) used in the study were selected from a database of more than 600000 commercially available drug-like compounds which docking scores obtained by a rigid docking were better than the re-docking scores of the co-crystalized reference ligands in the selected enzymes. To assess the differences in performance of the scoring functions implemented in different molecular docking software packages, docking of these ligands in the target proteins was performed using several widely used molecular modelling platforms: (i) rigid- and flexible-protein docking in MOE (v. 2019.01, https://www.chemcomp.com); (ii) rigid-protein docking in FlexX (v. 4.3) and ligand optimization and rescoring in HYDEscorer (v. 1.0), respectively (www.biosolveit.de); and (iii) rigid-protein docking in AutoDock Vina (http://vina.scripps.edu). Besides docking scores, the time for docking was also recorded and the computational costs were calculated for each of the studied docking protocol/scoring function pairs.

The binding energies estimated by the selected scoring functions were subjected to intercriteria analysis (ICrA). The ICrA approach relies on the formalisms of the intuitionistic fuzzy sets and index matrices, and attempts to uncover similarities in the behavior of criteria applied for evaluation of multiple objects. ICrA was employed as a potential tool to support the selection of an appropriate scoring function for ranking of more than 11 000 ligands identified to interact with all three proteins simultaneously. Further, an analysis of the intersections of the top 1000 ligands for each target ranked by different scoring functions, was performed. ICrA analysis revealed consonances between FlexX and AutoDock Vina scoring functions in all studied proteins, and additionally between MOE flexible-protein docking and AutoDock Vina in AChE. Analysis of intersection results was to a great extent in line with the intercriteria relations.

The results indicate that a precise selection of scoring functions and docking protocols, confirmed by the available knowledge of the studied objects, is needed. This analysis suggests also the possibility for optimization of in silico screening campaigns by avoidance of computationally expensive docking protocols that are highly consonant with the less expensive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höltje, H.-D., Sippl, W., Rognan, D., Folkers, G. (eds.): Molecular Modeling: Basic Principles and Applications. Wiley, Hoboken (2008)

    Google Scholar 

  2. Morphy, R., Kay, C., Rankovic, Z.: From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004). https://doi.org/10.1016/S1359-6446(04)03163-0

    Article  Google Scholar 

  3. Youdim, M.B.H., Buccafusco, J.J.: Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 26, 27–35 (2005). https://doi.org/10.1016/j.tips.2004.11.007

    Article  Google Scholar 

  4. Cheong, S.L., Federico, S., Spalluto, G., Klotz, K.-N., Pastorin, G.: The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov. Today 24, 1769–1783 (2019). https://doi.org/10.1016/j.drudis.2019.05.003

    Article  Google Scholar 

  5. Matos, M.J.: Multitarget therapeutic approaches for Alzheimer’s and Parkinson’s diseases: an opportunity or an illusion? Future Med. Chem. 13, 1301–1309 (2021). https://doi.org/10.4155/fmc-2021-0119

    Article  Google Scholar 

  6. Cheng, T., Li, X., Li, Y., Liu, Z., Wang, R.: Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 49, 1079–1093 (2009). https://doi.org/10.1021/ci9000053

    Article  Google Scholar 

  7. Li, Y., Han, L., Liu, Z., Wang, R.: Comparative assessment of scoring functions on an updated benchmark: 2. evaluation methods and general results. J. Chem. Inf. Model. 54, 1717–1736 (2014). https://doi.org/10.1021/ci500081m

  8. Su, M., et al.: Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59, 895–913 (2019). https://doi.org/10.1021/acs.jcim.8b00545

    Article  Google Scholar 

  9. Khamis, M.A., Gomaa, W.: Comparative assessment of machine-learning scoring functions on PDBbind 2013. Eng. Appl. Artif. Intell. 45, 136–151 (2015). https://doi.org/10.1016/j.engappai.2015.06.021

    Article  Google Scholar 

  10. Xu, W., Lucke, A.J., Fairlie, D.P.: Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J. Mol. Graph. Model. 57, 76–88 (2015). https://doi.org/10.1016/j.jmgm.2015.01.009

    Article  Google Scholar 

  11. Wang, Z., et al.: Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18, 12964–12975 (2016). https://doi.org/10.1039/C6CP01555G

    Article  Google Scholar 

  12. Stanzione, F., Giangreco, I., Cole, J.C.: Chapter four - use of molecular docking computational tools in drug discovery. In: Witty, D.R., Cox, B. (eds.) Progress in Medicinal Chemistry, pp. 273–343. Elsevier (2021). https://doi.org/10.1016/bs.pmch.2021.01.004

  13. Kalinowsky, L., Weber, J., Balasupramaniam, S., Baumann, K., Proschak, E.: A diverse benchmark based on 3D matched molecular pairs for validating scoring functions. ACS Omega 3, 5704–5714 (2018). https://doi.org/10.1021/acsomega.7b01194

    Article  Google Scholar 

  14. Atanassov, K., Mavrov, D., Atanassova, V.: A new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. In: Issues in IFSs and GNs, pp. 1–8 (2014)

    Google Scholar 

  15. Alov, P., Tsakovska, I., Pencheva, T., Ruseva, M., Tzvetkov, N., Pajeva, I.: In search for multitarget leads for treating neurodegenerative disorders: Structure-based pharmacophore modelling and virtual screening. Presented at the Asian Federation for Medicinal Chemistry (AFMC) 12th International Symposium “New Avenues for Design and Development of Translational Medicine” (AIMECS 2019), Istanbul, Turky, 8 September 2019

    Google Scholar 

  16. Tzvetkov, N., Alov, P., Tsakovska, I., Pencheva, T., Pajeva, I.: From single to multi-target active ligands against neurodegenerative diseases: Multi-potency screening and virtual activity evaluation. Presented at the Asian Federation for Medicinal Chemistry (AFMC) 12th International Symposium “New Avenues for Design and Development of Translational Medicine” (AIMECS 2019), Istanbul, Turky, 8 September 2019

    Google Scholar 

  17. Atanassov, K.: Generalized index matrices. C. R. Acad. Bulg. Sci. 40, 15–18 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10945-9

  19. Atanassov, K.: Intuitionistic Fuzzy Logics. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-48953-7

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  21. Jekova, I., Vassilev, P., Stoyanov, T., Pencheva, T.: InterCriteria analysis: application for ECG data analysis. Mathematics 9, 854 (2021). https://doi.org/10.3390/math9080854

    Article  Google Scholar 

  22. Georgieva, V., Angelova, N., Roeva, O., Pencheva, T.: InterCriteria analysis of wastewater treatment quality. Ecol. Saf. 10, 365–376 (2016)

    Google Scholar 

  23. Roeva, O., Fidanova, S.: Comparison of different metaheuristic algorithms based on InterCriteria analysis. J. Comput. Appl. Math. 340, 615–628 (2018). https://doi.org/10.1016/j.cam.2017.07.028

    Article  MathSciNet  MATH  Google Scholar 

  24. Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 365–372. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_31

    Chapter  Google Scholar 

  25. Tsakovska, I., et al.: InterCriteria analysis implementation for exploration of the performance of various docking scoring functions. In: Dimov, I., Fidanova, S. (eds.) HPC 2019. SCI, vol. 902, pp. 88–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55347-0_8

    Chapter  Google Scholar 

  26. Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuit. Fuzzy Sets 19, 1–13 (2013)

    MATH  Google Scholar 

  27. Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes Intuit. Fuzzy Sets 21, 81–88 (2015)

    MATH  Google Scholar 

  28. Roeva, O., Vassilev, P., Ikonomov, N., Angelova, M., Su, J., Pencheva, T.: On different algorithms for intercriteria relations calculation. In: Hadjiski, M., Atanassov, K.T. (eds.) Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications. SCI, vol. 757, pp. 143–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78931-6_10

    Chapter  Google Scholar 

  29. Berman, H.M., et al.: The protein data bank. Nucl. Acids Res. 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

    Article  Google Scholar 

  30. Binda, C., et al.: Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J. Med. Chem. 50, 5848–5852 (2007). https://doi.org/10.1021/jm070677y

    Article  MathSciNet  Google Scholar 

  31. Lauffer, B.E.L., et al.: Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem. 288, 26926–26943 (2013). https://doi.org/10.1074/jbc.M113.490706

    Article  Google Scholar 

  32. Heitler, W., London, F.: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Physik. 44, 455–472 (1927). https://doi.org/10.1007/BF01397394

    Article  MATH  Google Scholar 

  33. Labute, P.: The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 29, 1693–1698 (2008). https://doi.org/10.1002/jcc.20933

    Article  Google Scholar 

  34. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: Fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996). https://doi.org/10.1006/jmbi.1996.0477

    Article  Google Scholar 

  35. Böhm, H.-J.: The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput.-Aided Mol. Des. 8, 243–256 (1994). https://doi.org/10.1007/BF00126743

    Article  Google Scholar 

  36. Reulecke, I., Lange, G., Albrecht, J., Klein, R., Rarey, M.: Towards an integrated description of hydrogen bonding and dehydration: decreasing false positives in virtual screening with the HYDE scoring function. Chem. Med. Chem. 3, 885–897 (2008). https://doi.org/10.1002/cmdc.200700319

  37. Schneider, N., Lange, G., Hindle, S., Klein, R., Rarey, M.: A consistent description of HYdrogen bond and DEhydration energies in protein–ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided Mol. Des. 27, 15–29 (2013). https://doi.org/10.1007/s10822-012-9626-2

    Article  Google Scholar 

  38. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  39. Koes, D.R., Baumgartner, M.P., Camacho, C.J.: Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893–1904 (2013). https://doi.org/10.1021/ci300604z

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the National Science Fund of Bulgaria (grants № DN 17/6 and № KP-06-OPR 03/8) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petko Alov or Tania Pencheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alov, P., Pajeva, I., Tsakovska, I., Pencheva, T. (2023). Comparison of Docking Scoring Functions by InterCriteria Analysis on a Set of Protein Targets Related to Alzheimer and Parkinson Diseases. In: Sotirov, S., Pencheva, T., Kacprzyk, J., Atanassov, K.T., Sotirova, E., Ribagin, S. (eds) Recent Contributions to Bioinformatics and Biomedical Sciences and Engineering. BioInfoMed 2022. Lecture Notes in Networks and Systems, vol 658. Springer, Cham. https://doi.org/10.1007/978-3-031-31069-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31069-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31068-3

  • Online ISBN: 978-3-031-31069-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics