Skip to main content

Step E for EKG-Based Heart Rate Reserve in Stress Echocardiography

  • 214 Accesses

Abstract

Cardiac autonomic unbalance is a major determinant of vulnerability to arrhythmias and a risk factor for sudden death. The clinical assessment with baroreflex sensitivity or heart rate variability remains complex, time-consuming, and inaccurate. The sympathetic reserve can be easily assessed with zero training and 100% reproducibility during stress echocardiography through heart rate reserve, calculated from 1-lead ECG present in the echo monitor as the peak-to-rest ratio of heart rate. The normal cutoff values are higher (≥1.80) for stronger chronotropic stresses such as exercise or dobutamine and lower (>1.22) for milder chronotropic stresses such as dipyridamole or adenosine, which stimulate cardiac afferent neurons through A2A adenosine receptors, independently of inducible ischemia and arterial hypotension. A reduced heart rate reserve is a sign of abnormal cardiac sympathetic reserve, an important prognostic factor, and a potential therapeutic target. A reduced heart rate reserve and inducible regional wall motion abnormalities have incremental value in predicting outcomes. Heart rate reserve is imaging-independent and useful to assess the arrhythmic vulnerability and cardiac autonomic unbalance during stress echocardiography.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brubaker PH, Kitzman DW. Chronotropic incompetence. Causes, consequences, and management. Circulation. 2011;123:1010–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. American Heart Association exercise, cardiac rehabilitation, and prevention Committee of the Council on clinical cardiology, council on nutrition, physical activity and metabolism, council on cardiovascular and stroke nursing, and council on epidemiology and prevention. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.

    Article  PubMed  Google Scholar 

  3. Lauer MS, Francis GS, Okin PM, Pashkow FJ, Snader CE, Marwick TH. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA. 1999;281:524–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hage FG, Iskandrian AE. Heart rate response during vasodilator stress myocardial perfusion imaging: mechanisms and implications. J Nucl Cardiol. 2010;17:536e539.

    Article  Google Scholar 

  5. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation, and sudden cardiac death. Circ Res. 2015;116:2005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laghi-Pasini F, Guideri F, Petersen C, Lazzerini PE, Sicari R, Capecchi PL, et al. Blunted increase in plasma adenosine levels following dipyridamole stress in dilated cardiomyopathy patients. J Intern Med. 2003;254:591–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lucarini AR, Picano E, Marini C, Favilla S, Salvetti A, Distante A. Activation of sympathetic tone during dipyridamole test. Chest. 1992;102:444–7.

    Article  CAS  PubMed  Google Scholar 

  8. Biaggioni I, Killian TJ, Mosqueda-Garcia R, Robertson RM, Robertson D. Adenosine increases sympathetic nerve traffic in humans. Circulation. 1991;83:1668–75.

    Article  CAS  PubMed  Google Scholar 

  9. Petrucci E, Mainardi LT, Balian V, Ghiringhelli S, Bianchi AM, Bertinelli M, et al. Assessment of heart rate variability changes during dipyridamole infusion and dipyridamole-induced myocardial ischemia: a time-variant spectral approach. J Am Coll Cardiol. 1996;28:924–34.

    Article  CAS  PubMed  Google Scholar 

  10. Picano E, De Pieri G, Salerno JA, Arbustini E, Distante A, Martinelli L, et al. Electrocardiographic changes suggestive of myocardial ischemia elicited by dipyridamole infusion in acute rejection early after heart transplantation. Circulation. 1990;81:72–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bombardini T, Pacini D, Potena L, Maccherini M, Kovacevic-Preradovic T, Picano E. Heart rate reserve during dipyridamole stress test applied to potential heart donors in brain death. Minerva Cardioangiol. 2020;68:249–57.

    Article  PubMed  Google Scholar 

  12. Elhendy A, Mahoney DW, Khanderia BK, Burger K, Pellikka PA. Prognostic significance of impairment of heart rate response to exercise. Impact of left ventricular function and myocardial ischemia. J Am Coll Cardiol. 2003;42:823–30.

    Article  PubMed  Google Scholar 

  13. Chaowalit N, Mc Cully RB, Callahan MJ, Mookadam F, Bailey KM, Pellikka PA. Outcomes after normal dobutamine SE and predictors of adverse events: long-term follow-up of 3014 patients. Eur Heart J. 2006;27:3039–44.

    Article  PubMed  Google Scholar 

  14. Cortigiani L, Carpeggiani C, Landi P, Raciti M, Bovenzi F, Picano E. Usefulness of blunted heart rate reserve as an imaging-independent prognostic predictor during dipyridamole-echocardiography test. Am J Cardiol. 2019;124:972–7.

    Article  PubMed  Google Scholar 

  15. Cortigiani L, Carpeggiani C, Landi P, Raciti M, Bovenzi F, Picano E. Prognostic value of heart rate reserve in patients with permanent atrial fibrillation during dipyridamole SE. Am J Cardiol. 2020;125:1661–5.

    Article  PubMed  Google Scholar 

  16. Zobel EH, Hasbak P, Winther SA, Hansen CS, Fleischer J, von Scholten BJ. Cardiac autonomic function is associated with myocardial flow reserve in type 1 diabetes. Diabetes. 2019;68:1277–86.

    Article  CAS  PubMed  Google Scholar 

  17. von Scholten BJ, Hansen CS, Hasbak P, Kjaer A, Rossing P, Hansen TW. Cardiac autonomic function is associated with the coronary microcirculatory function in patients with type 2 diabetes. Diabetes. 2016;65:3129–38.

    Article  Google Scholar 

  18. Eleftheriadou A, Williams S, Nevitt S, Brown E, Roylance R, Wilding JPH, et al. The prevalence of cardiac autonomic neuropathy in prediabetes: a systematic review. Diabetologia. 2021;64:288–303.

    Article  CAS  PubMed  Google Scholar 

  19. Ohshima S, Isobe S, Izawa H, Nanasato M, Ando A, Yamada A, et al. Cardiac sympathetic dysfunction correlates with abnormal myocardial contractile reserve in dilated cardiomyopathy patients. J Am Coll Cardiol. 2005;46:2061–8.

    Article  PubMed  Google Scholar 

  20. Isobe S, Izawa H, Iwase M, Nanasato M, Nonokawa M, Ando A, et al. Cardiac 123I-MIBG reflects left ventricular functional reserve in patients with nonobstructive hypertrophic cardiomyopathy. J Nucl Med. 2005;46:909–16.

    PubMed  Google Scholar 

  21. Ciampi Q, Olivotto I, Peteiro J, D'Alfonso MG, Mori F, Tassetti L, et al. Prognostic value of reduced heart rate reserve during exercise in hypertrophic cardiomyopathy. J Clin Med. 2021;10:1347.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cortigiani L, Ciampi Q, Carpeggiani C, Bovenzi F, Picano E. Prognostic value of heart rate reserve is additive to coronary flow velocity reserve during dipyridamole SE. Arch Cardiovasc Dis. 2020;113:244–51.

    Article  PubMed  Google Scholar 

  23. Cortigiani L, Carpeggiani C, Landi P, Raciti M, Bovenzi F, Picano E. SE 2020 study group of the Italian Society of Echocardiography and Cardiovascular Imaging (SIECVI). Prognostic value of heart rate reserve during dipyridamole SE in patients with abnormal chronotropic response to exercise. Am J Cardiol. 2022;154:106–10.

    Article  Google Scholar 

  24. Cortigiani L, Carpeggiani C, Meola L, Djordjevic-Dikic A, Bovenzi F, Picano E. Reduced sympathetic reserve detectable by heart rate response after dipyridamole in anginal patients with normal coronary arteries. J Clin Med. 2022;11:52.

    Article  CAS  Google Scholar 

  25. Cortigiani L, Ciampi Q, Carpeggiani C, Lisi C, Bovenzi F, Picano E. Additional prognostic value of heart rate reserve over the left ventricular contractile reserve and coronary flow velocity reserve in diabetic patients with negative vasodilator SE by regional wall motion criteria. Eur Heart J Cardiovasc Imaging. 2022;23:209–16.

    Article  PubMed  Google Scholar 

  26. Daros CB, Ciampi Q, Cortigiani L, Gaibazzi N, Rigo F, Wierzbowska-Drabik K, et al. Coronary flow, left ventricular contractile and heart rate reserve in non-ischemic heart failure. J Clin Med. 2021;0:3405.

    Google Scholar 

  27. Ciampi Q, Zagatina A, Cortigiani L, Wierzbowska-Drabik K, Kasprzak JD, Haberka M, et al. Prognostic value of stress echocardiography assessed by the ABCDE protocol. Eur Heart J. 2021;42:3869–78.

    Google Scholar 

  28. Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci. 2010;6:11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with Bradycardia and Cardiac Conduction Delay: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Circulation. 2019;140:e382–482. Erratum in: Circulation 2019;140:e506–e508.

    PubMed  Google Scholar 

  30. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2016;17:1191–229.

    Google Scholar 

  31. Picano E, Pierard L, Peteiro J, Djordjevic-Dikic A, Sade LE, Cortigiani L, et al. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: a clinical consensus statement from the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur heart J Cardiovasc. Imaging. 2023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 3919 kb)

(MP4 4271 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortigiani, L., Picano, E. (2023). Step E for EKG-Based Heart Rate Reserve in Stress Echocardiography. In: Picano, E. (eds) Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-031-31062-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31062-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31061-4

  • Online ISBN: 978-3-031-31062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics