Skip to main content

Strain and Real-Time Three-Dimensional Stress Echocardiography

  • 218 Accesses

Abstract

New technologies significantly contribute to the transformation of echocardiography from a subjective art of image interpretation to a set of objective diagnostic tools. Peak global longitudinal strain is an angle-independent parameter imaged from standard apical views and may detect subtle abnormalities of myocardial function not otherwise detectable with ejection fraction, but there are still three significant problems before clinical acceptance: (1) across-vendor standardization of two-dimensional strain acquisition, analysis, and cutoff values under stress (when image quality degrades for inadequate frame rates); (2) uncertain reproducibility of regional strain, especially in the posterior circulation; and (3) need for superior image quality. Real-time three-dimensional echocardiography is excellent for imaging apex without foreshortening, reduces the acquisition time, and allows volumetric estimates of heart chambers without geometric assumptions, but spatial resolution remains worse than two-dimensional images. Current recommendations endorse peak global longitudinal strain to assess the left ventricular contractile reserve, present when the stress-to-rest variation is >2%. However, a decrease can be observed in normal subjects. Quantification of stress echo remains a challenge with new technologies.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. ESC Scientific Document Group 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77.

    PubMed  Google Scholar 

  2. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;78:e187–285. https://doi.org/10.1016/j.jacc.2021.07.053.

    Article  PubMed  Google Scholar 

  3. Picano E SE. From pathophysiological toy to diagnostic tool. Point of view. Circulation. 1992;85:1604–12.

    CAS  PubMed  Google Scholar 

  4. Picano E, Lattanzi F, Orlandini A, et al. SE and the human factor: the importance of being an expert. J Am Coll Cardiol. 1991;17:666–9.

    CAS  PubMed  Google Scholar 

  5. Hoffmann R, Lethen H, Picano E, et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine SE. J Am Coll Cardiol. 1996;27:330–6.

    CAS  PubMed  Google Scholar 

  6. Varga A, Picano E, Pratali L, et al. Madness and method in SE reading. Eur Heart J. 1999;20:1271–5.

    CAS  PubMed  Google Scholar 

  7. Henein M, Gibson D. Dobutamine SE: the long and short of it. Eur Heart J. 2002;23:520–2.

    CAS  PubMed  Google Scholar 

  8. De Castro S, Pandian NG, editors. Manual of clinical echocardiography. Washington: Time-Science International Medical; 2000.

    Google Scholar 

  9. Hirshleifer J, Crawford M, O’Rourke RA, et al. Influence of acute alterations in heart rate and systemic arterial pressure on echocardiographic measures of left ventricular performance in normal human subjects. Circulation. 1975;52:835–41.

    CAS  PubMed  Google Scholar 

  10. Mann DL, Gillam LD, Weyman AE. Cross-sectional echocardiographic assessment of regional left ventricular performance and myocardial perfusion. Prog Cardiovasc Dis. 1986;29:1–52.

    CAS  PubMed  Google Scholar 

  11. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12:167–205.

    PubMed  Google Scholar 

  12. Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, Mc Veight ER, Omens JH. Transmural dispersion of myofiber mechanics. J Am Coll Cardiol. 2007;49:909–16.

    PubMed  PubMed Central  Google Scholar 

  13. Ingels NB Jr. Myocardial fiber architecture and left ventricular function. Technol Health Care. 1997;5:45–52.

    PubMed  Google Scholar 

  14. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain: a novel software for the real-time quantitative echocardiographic assessment of myocardial function. JASE. 2004;17:1021–9.

    Google Scholar 

  15. Mornos C, Petrescu L. Early detection of anthracycline-mediated cardiotoxicity: the value of considering both global longitudinal left ventricular strain and twist. Can J Physiol Pharmacol. 2013;91:601–7.

    CAS  PubMed  Google Scholar 

  16. Torrent Guasp F, Buckberg G, Carmine C, Cox J, Coghlan H, Gharib M. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Seminars. Thorac Cardiovasc Surg. 2001;13:301–19.

    CAS  Google Scholar 

  17. Ballester M, Ferreira A, Carreras F. The myocardial band. Heart Fail Clin. 2008;4:261–72. https://doi.org/10.1016/j.hfc.2008.02.011.

    Article  PubMed  Google Scholar 

  18. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. Am Soc Echocardiogr. 2010;23:351–69.

    Google Scholar 

  19. Helle-Valle T, Crosby J, Edvardsen T, Lvseggen E, Amundsen BH, Smith HJ, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.

    PubMed  Google Scholar 

  20. León DG, López-Yunta M, Alfonso-Almazán JM, Marina-Breysse M, Quintanilla JG, Sánchez-González J, et al. Three-dimensional cardiac fiber disorganization as a novel parameter for ventricular arrhythmia stratification after myocardial infarction. Europace. 2019;21:822–32.

    PubMed  PubMed Central  Google Scholar 

  21. Trainini JC, Mora V, Lowenstein J, Beraudo M, Wernicke M, Trainini A. The myocardial band theory: new discoveries supporting the complex mechanism of myocardial torsion. J Pract Echocardiogr. 2020;3:14–8. https://doi.org/10.37615/retic.v3n1a4.

    Article  Google Scholar 

  22. Trainini J, Beraudo M, Wernicke M, Trainini A, Lowenstein J, Bastarrica ME. Myocardial torsion and cardiac fulcrum. J Morphol Anat. 2021;S1:1.

    Google Scholar 

  23. Yuan LJ, Takenaka K, Uno K, Ebihara A, Sasaki K, Komuro T, et al. Normal and shear strains of the left ventricle in healthy human subjects measured by two-dimensional speckle tracking echocardiography. Cardiovasc Ultrasound. 2014;12:7. https://doi.org/10.1186/1476-7120-12-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19:591–600. https://doi.org/10.1093/ehjci/jey042. Erratum in: Eur Heart J Cardiovasc Imaging. 2018;19:830-833.

    Article  PubMed  Google Scholar 

  25. Ünlü S, Mirea O, Bézy S, Duchenne J, Pagourelias ED, Bogaert J, Thomas JD, Badano LP, Voigt JU. Inter-vendor variability in strain measurements depends on software rather than image characteristics. Int J Cardiovasc Imaging. 2021;37:1689–97. https://doi.org/10.1007/s10554-020-02155-2.

    Article  PubMed  Google Scholar 

  26. Mora Llabata V, Roldán Torresa I, Saurí Ortiza A, Fernández Galera R, Monteagudo Viana M, et al. Correspondence of myocardial strain with Torrent-Guasp’s theory: contributions of new echocardiographic parameters. Argentine J Cardiol. 2016;84:541–9.

    Google Scholar 

  27. Mora V, Roldán I, Romero E, Saurí A, Romero D, Pérez-Gozabo J, et al. Myocardial contraction during the diastolic isovolumetric period: analysis of longitudinal strain by means of speckle tracking echocardiography. J Cardiovasc Dev Dis. 2018;5:41. https://doi.org/10.3390/jcdd5030041.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakatani S. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound. 2011;19:1–6.

    PubMed  PubMed Central  Google Scholar 

  29. Cosin-Aguilar J, Hernandiz MA. The arrangement of myocardial fibers in a band determines the morphology and function of the heart. Rev Esp Cardiol. 2013;66:768–70.

    PubMed  Google Scholar 

  30. Coghlan C, Hoffman J. Leonardo da Vinci’s flights of the mind must continue: cardiac architecture and the fundamental relation of form and function revisited. Eur J Cardiothorac Surg. 2006;295:S4–S17.

    Google Scholar 

  31. Cosín AJ. Francisco Torrent Guasp (1931-2005). Rev Esp Cardiol. 2005;58:759–60.

    Google Scholar 

  32. Bansal M, Kasliwal RR. How do I do it? Speckle-tracking echocardiography. Indian Heart J. 2013;65:117–23.

    PubMed  PubMed Central  Google Scholar 

  33. Pandian NG, Skorton DJ, Collins SM, et al. Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol. 1983;51:1667–73.

    CAS  PubMed  Google Scholar 

  34. Falsetti HL, Marcus ML, Kerber RE, et al. Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation. 1981;63:747–51.

    CAS  PubMed  Google Scholar 

  35. Mondillo S, Galderisi M, Ballo P, et al. Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr. 2006;9:1085–91.

    Google Scholar 

  36. Borges AC, Sicari R, Picano E, et al. Heterogeneity of left ventricular regional wall thickening following dobutamine infusion in normal human subjects. Eur Heart J. 1995;11:1726–30.

    Google Scholar 

  37. Carstensen S, Ali SM, Stensgaard-Hansen FV, et al. Dobutamine-atropine SE in asymptomatic healthy individuals. The relativity of stress-induced hyperkinesia. Circulation. 1995;92:3453–63.

    CAS  PubMed  Google Scholar 

  38. Matre K, Moen CA, Fanneløp T, et al. Multilayer radial systolic strain can identify subendocardial ischemia: an experimental tissue Doppler imaging study of the porcine left ventricular wall. Eur J Echocardiogr. 2007;8:420–30.

    PubMed  Google Scholar 

  39. Skulstad H, Urheim S, Edvardsen T, et al. Grading of myocardial dysfunction by tissue Doppler echocardiography: a comparison between velocity, displacement, and strain imaging in acute ischemia. J Am Coll Cardiol. 2006;47:1672–82.

    PubMed  Google Scholar 

  40. Tanaka H, Oishi Y, Mizuguchi Y, et al. Contribution of the pericardium to left ventricular torsion and regional myocardial function in patients with total absence of the left pericardium. J Am Soc Echocardiogr. 2008;21:268–74.

    PubMed  Google Scholar 

  41. Reant P, Labrousse L, Lafitte S, Bordachar P, Pillois X, Tariosse L, et al. Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine SE in ischemic conditions. J Am Coll Cardiol. 2008;51:149–57. https://doi.org/10.1016/j.jacc.2007.07.088.

    Article  PubMed  Google Scholar 

  42. Popovic Z, Thomas JD. Left ventricular systolic function. Basic principles. In: Lang R, Goldstein SA, Kronzon I, Khanderia BJ, Saric M, Mor-Avi V, editors. American Society Echocardiography’s comprehensive echocardiography. Philadelphia: Elsevier; 2022.

    Google Scholar 

  43. Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging. 2018;11:260–74. https://doi.org/10.1016/j.jcmg.2017.11.017.

    Article  PubMed  Google Scholar 

  44. D’Andrea A, Sperlongano S, Pacileo M, Venturini E, Iannuzzo G, Gentile M, et al. New ultrasound technologies for ischemic heart disease assessment and monitoring in cardiac rehabilitation. J Clin Med. 2020;9:3131.

    PubMed  PubMed Central  Google Scholar 

  45. Sabatino J, Castaldi B, Di Salvi G. How to measure left ventricular twist by two-dimensional speckle-tracking analysis. Eur Heart J Cardiovasc Imaging. 2021;22:961–3.

    PubMed  Google Scholar 

  46. Mele D, Fiorencis A, Chiodi E, Gardini C, Benea G, Ferrari R. Polar plot maps by parametric strain echocardiography allow accurate evaluation of non-viable transmural scar tissue in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2016;17:668–77.

    PubMed  Google Scholar 

  47. D’Elia N, Caselli S, Kosmala W, Lancellotti P, Morris D, Muraru D, et al. Normal global longitudinal strain: an individual patient meta-analysis. JACC Cardiovasc Imaging. 2020;13:167–9. https://doi.org/10.1016/j.jcmg.2019.07.020.

    Article  PubMed  Google Scholar 

  48. Karlsen S, Melichova D, Dahlslett T, Grenne B, Sjøli B, Smiseth O, et al. Increased deformation of the left ventricle during exercise test measured by global longitudinal strain can rule out significant coronary artery disease in patients with suspected unstable angina pectoris. Echocardiography. 2022;39:233–9. https://doi.org/10.1111/echo.15295.

    Article  PubMed  Google Scholar 

  49. Park JH, Choi JO, Park SW, Cho GY, Oh JK, Lee JH, Seong IW. Normal references of right ventricular strain values by two-dimensional strain echocardiography according to age and gender. Int J Cardiovasc Imaging. 2018;34:177–83. https://doi.org/10.1007/s10554-017-1217-9.

    Article  PubMed  Google Scholar 

  50. Pathan F, D’Elia N, Marwick TH, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30:59–70.

    PubMed  Google Scholar 

  51. Morrone D, Arbucci R, Wierzbowska-Drabik K, Ciampi Q, Peteiro J, Agoston G, et al. Feasibility and functional correlates of left atrial volume changes during SE in chronic coronary syndromes. Int J Cardiovasc Imaging. 2021;37:953–64.

    PubMed  Google Scholar 

  52. Romero D, Arbucci R, Sevilla D, Rousse G, Lowenstein D, Rodriguez M, et al. The reservoir function. functional evaluation of the left atrium by two-dimensional strain during rest and exercise stress. Argentine J Cardiol. 2017;85:498–504.

    Google Scholar 

  53. Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol. 2001;281:2002–9.

    Google Scholar 

  54. Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47:789–93.

    PubMed  Google Scholar 

  55. Yamada A, Luis SA, Sathianan D, et al. Reproducibility of regional and global longitudinal strains derived from two-dimensional speckle-tracking and Doppler tissue imaging between expert and novice readers during quantitative dobutamine SE. J Am Soc Echocardiogr. 2014;27:880–7.

    PubMed  Google Scholar 

  56. Rodriguez-Zanella H, Arbucci R, Fritche-Salazar JF, Ortiz-Leon XA, Tuttolomondo D, Lowenstein DH, et al. Vasodilator strain SE in suspected coronary microvascular angina. J Clin Med. 2022;11:711. https://doi.org/10.3390/jcm11030711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roemer S, Jaglan A, Santos D, Umland M, Jain R, Tajik AJ, et al. The utility of myocardial work in clinical practice. J Am Soc Echocardiogr. 2021;34:807–18. https://doi.org/10.1016/j.echo.2021.04.013.

    Article  PubMed  Google Scholar 

  58. Gupta K, Kakar TS, Gupta A. Role of left ventricle deformation analysis for significant coronary artery disease detection. Echocardiography. 2019;36:1084–94.

    PubMed  PubMed Central  Google Scholar 

  59. Ilardi F, Santoro C, Maréchal P, Dulgheru R, Postolache A, Esposito R, et al. Accuracy of global and regional longitudinal strain at peak of dobutamine SE to detect significant coronary artery disease. Int J Cardiovasc Imaging. 2021;37:1321–31. https://doi.org/10.1007/s10554-020-02121-y.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Caniggia C, Amor M, Lowenstein HD, et al. Feasibility and contributions of the analysis of global and regional 2D longitudinal strain during exercise SE. Argentine J Cardiol. 2014;82:111–9.

    Google Scholar 

  61. Longobardo L, Zito C, Carerj S, Khanderia BK. Speckle-tracking and strain measurements: principles, techniques, and limitations. In: Lang R, Goldstein SA, Kronzon I, Khanderia BJ, Saric M, Mor-Avi V, editors. American Society Echocardiography’s comprehensive echocardiography. Philadelphia: Elsevier; 2022.

    Google Scholar 

  62. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, et al. Incidence and characteristics of segmental post systolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr. 2003;16:415–23.

    PubMed  Google Scholar 

  63. Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69:1043–56.

    PubMed  Google Scholar 

  64. Arbucci R, Lowenstein Haber D, Saad A, Rousse G, Amor M, Zambrana G, et al. The behavior of regional longitudinal strain depends on the coronary reserve in a simultaneous analysis during dipyridamole SE. Argentine J Cardiol. 2019;87:462–9.

    Google Scholar 

  65. Biering-Sørensen T. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging. 2014;7:58–65.

    PubMed  Google Scholar 

  66. Choi J-O, Cho SW, Song YB, Cho SJ, Song BG, Lee S-C, et al. Longitudinal 2D strain at rest predicts the presence of left main and three-vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr. 2009;10:695–701.

    PubMed  Google Scholar 

  67. Montgomery DE, Puthumana JJ, Fox JM, Ogunyankin KO. Global longitudinal strain aids the detection of nonobstructive coronary artery disease, in the resting echocardiogram. Eur Heart J Cardiovasc Imaging. 2012;13:579–87.

    PubMed  Google Scholar 

  68. Gastaldello N, Merlo P, Amor M, Alasia D, Gallello MI, Rousee MG, Caso N, et al. Longitudinal strain at rest does not predict SE results. Argentine J Cardiol. 2016;84:343–8.

    Google Scholar 

  69. Norum IB, Ruddox V, Edvardsen T, Otterstad JE. Diagnostic accuracy of left ventricular longitudinal function by speckle tracking echocardiography to predict significant coronary artery stenosis. A systematic review. BMC Med Imaging. 2015;15:25.

    PubMed  Google Scholar 

  70. Lowenstein L, Gastaldello N, Merlo P, Gallello MI, Rousse MG, Darú V. Longitudinal strain has no ischemic memory. Argentine J Cardiol. 2016;84:365–8.

    Google Scholar 

  71. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for performance, interpretation, and application of SE in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1–41.

    Google Scholar 

  72. Hanekom L, Cho GY, Marwick T. Comparison of two-dimensional speckle tracking and tissue Doppler strain measurement during dobutamine SE: an angiographic correlation. Eur Heart J. 2007;28:1765–72.

    PubMed  Google Scholar 

  73. Voigt JU, Arnold MF, Karlsson M, Hübbert L, Kukulski T, Hatle L, et al. Assessment of regional longitudinal myocardial strain rate derived from Doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr. 2000;13:588–98.

    CAS  PubMed  Google Scholar 

  74. Hoffmann R, Altiok E, Nowak B, Heussen N, Kühl H, Kaiser HJ, et al. Strain rate measurement by Doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricular function. J Am Coll Cardiol. 2002;39:443–9.

    PubMed  Google Scholar 

  75. Hoffmann R, Altiok E, Nowak B, Kühl H, Kaiser HJ, Buell U, et al. Strain rate analysis allows detection of differences in diastolic function between viable and nonviable myocardial segments. J Am Soc Echocardiogr. 2005;18:330–5.

    PubMed  Google Scholar 

  76. Hanekom L, Jenkins C, Jeffries L, Case C, Mundy J, Hawley C, et al. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by Dobutamine echocardiography: a follow-up study after revascularization. Circulation. 2005;112:3892–900.

    PubMed  Google Scholar 

  77. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH. Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imaging. 2010;3:121–31.

    PubMed  Google Scholar 

  78. Park SM, Miyazaki C, Prasad A, Bruce CJ, Chandrasekaran K, Rihal C, et al. Feasibility of prediction of myocardial viability with Doppler tissue imaging following percutaneous coronary intervention for ST-elevation anterior myocardial infarction. J Am Soc Echocardiogr. 2009;22:183–9.

    PubMed  Google Scholar 

  79. Zhang Y, Chan AK, Yu CM, Yip GW, Fung JW, Lam WW, et al. Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005;46:864–71.

    PubMed  Google Scholar 

  80. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63:447–56.

    PubMed  Google Scholar 

  81. Morris DA, Ma X-X, Belyavskiy E, Kumar RA, Kropf M, Kraft R, et al. Left ventricular longitudinal systolic function analyzed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis. Open Heart. 2017;4:e000630.

    PubMed  PubMed Central  Google Scholar 

  82. Morris DA, Boldt LH, Eichstädt H, Ozcelik C, Haverkamp W. Myocardial systolic and diastolic performance derived by 2-dimensional speckle tracking echocardiography in heart failure with normal left ventricular ejection fraction. Circ Heart Fail. 2012;5:610–20.

    PubMed  Google Scholar 

  83. Pieske B, Tschöpe C, De Boer A, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: The HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40:3297–317.

    PubMed  Google Scholar 

  84. Wang J, Fang F, Yip GW-K, Sanderson JE, Feng W, Xie J-M, et al. Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. Int J Cardiol. 2015;178:131–5.

    PubMed  Google Scholar 

  85. Tschöpe C, Senni M. Usefulness and clinical relevance of left ventricular global longitudinal systolic strain in patients with heart failure with preserved ejection fraction. Heart Fail Rev. 2020;25:67–73.

    PubMed  Google Scholar 

  86. Lowenstein JA, Darú V, Amor M, Carlessi A, Zambrana G, Descalzo M, et al. Simultaneous analysis of 2D strain, coronary reserve, and parietal contractility during dipyridamole SE. Comparative results. Argentine J Cardiol. 2010;78:499–506.

    Google Scholar 

  87. Van Pelt NC, Stewart RA, Legget ME, et al. Longitudinal left ventricular contractile dysfunction after exercise in aortic stenosis. Heart. 2007;93:732738.

    Google Scholar 

  88. Lancellotti P, Cosyns B, Zacharakis D, et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J Am Soc Echocardiogr. 2008;21:1331–6.

    PubMed  Google Scholar 

  89. Dulgheru R, et al. Multimodality imaging strategies for the assessment of aortic stenosis viewpoint of the heart valve clinic international database (HAVEC) group. Circ Cardiovasc Imaging. 2016;9:e004352.

    PubMed  Google Scholar 

  90. Arbucci R, Lowenstein Haber DM, Rousse MG, Saad AK, Martínez Golleti L, Gastaldello N, et al. Long term prognostic value of contractile reserve assessed by global longitudinal strain in patients with asymptomatic severe aortic stenosis. J Clin Med. 2022;11:689. https://doi.org/10.3390/jcm11030689.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101:2271–6.

    CAS  PubMed  Google Scholar 

  92. Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol. 1991;68:85–9.

    CAS  PubMed  Google Scholar 

  93. Galderisi M, de Simone G, Innelli P, Turco A, Turco S, Capaldo B, et al. Impaired inotropic response in type 2 diabetes mellitus: a strain rate imaging study. Am J Hypertens. 2007;20:548–55.

    PubMed  Google Scholar 

  94. Eroglu E, D’Hooge J, Sutherland GR, Marciniak A, Thijs D, Droogne W, et al. Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart. 2008;94:e3.

    CAS  PubMed  Google Scholar 

  95. Ypenburg C, Sieders A, Bleeker GB, Holman ER, van der Wall EE, Schalij MJ, et al. Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy. Am Heart J. 2007;154:1160.

    PubMed  Google Scholar 

  96. Moonen M, Senechal M, Cosyns B, Melon P, Nellessen E, Pierard L, et al. Impact of contractile reserve on acute response to cardiac resynchronization therapy. Cardiovasc Ultrasound. 2008;6:65.

    PubMed  PubMed Central  Google Scholar 

  97. Takeuchi M, Lang RM. Three-dimensional stress testing: volumetric acquisitions. Cardiol Clin. 2007;25:267–72.

    PubMed  Google Scholar 

  98. Ahmad M, Xie T, McCulloch M, et al. Real-time three-dimensional dobutamine SE in assessment SE in the assessment of ischemia: comparison with two-dimensional dobutamine SE. J Am Coll Cardiol. 2001;37:1303–9.

    CAS  PubMed  Google Scholar 

  99. Matsumura Y, Hozumi T, Arai K, et al. Non-invasive assessment of myocardial ischemia using new real-time three-dimensional dobutamine SE: comparison with conventional two-dimensional methods. Eur Heart J. 2005;26:1625–32.

    PubMed  Google Scholar 

  100. Pratali L, Molinaro S, Corciu AI, et al. Feasibility of real-time three-dimensional echocardiography: pharmacological and semi-supine exercise. Cardiovasc Ultrasound. 2010;24:8.

    Google Scholar 

  101. Barletta G, Del Bene R. Feasibility of real-time three-dimensional echocardiography: pharmacological and semi-supine exercise. J Cardiovasc Med. 2011;12:455–9.

    Google Scholar 

  102. Aggeli C, Felekos I, Roussakis G, et al. Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease. Eur J Echocardiogr. 2011;12:648–55.

    PubMed  Google Scholar 

  103. Berbarie RF, Dib E, Ahmad M. SE using real-time three-dimensional imaging. Echocardiography. 2018;35:1196–203. https://doi.org/10.1111/echo.14050.

    Article  PubMed  Google Scholar 

  104. Bombardini T. Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovasc Ultrasound. 2005;3:27.

    PubMed  PubMed Central  Google Scholar 

  105. Bombardini T, Zoppè M, Ciampi Q, et al. Myocardial contractility in the SE lab: from pathophysiological toy to the clinical tool. Cardiovasc Ultrasound. 2013;12:20.

    Google Scholar 

  106. Lown B. The tyranny of technology. Hosp Pract. 1997;32:25.

    CAS  Google Scholar 

  107. Feinstein AR. Diagnostic and spectral markers. Philadelphia: Clinical epidemiology. Saunders; 1985. p. 597–631.

    Google Scholar 

  108. US Dept of Health and Human Services. Challenge and opportunity on the critical path of new medical products. FDA report. Washington: US Dept of Health and Human Services; 2004.

    Google Scholar 

  109. Fraser AG. A manifesto for cardiovascular imaging: addressing the human factor. Eur Heart J Cardiovasc Imaging. 2017;18:1311–21.

    PubMed  PubMed Central  Google Scholar 

  110. Pellikka PA, Douglas PS, Miller JG, et al. American Society of Echocardiography Cardiovascular technology and research summit. A roadmap for 2020. J Am Soc Echocardiogr. 2013;26:325–38.

    PubMed  Google Scholar 

  111. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantitation by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    PubMed  Google Scholar 

  112. Singh A, Voss WB, Lentz RW, Thomas JD, Akhter N. The diagnostic and prognostic value of echocardiographic strain. JAMA Cardiol. 2019;4:580–8. https://doi.org/10.1001/jamacardio.2019.1152.

    Article  PubMed  Google Scholar 

  113. Čelutkienė J, Pudil R, López-Fernández T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2021;22:1504–24. https://doi.org/10.1002/ejhf.1957.

    Article  CAS  Google Scholar 

  114. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definition of a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry task force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93.

    PubMed  Google Scholar 

  115. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The clinical use of SE in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;17:1191–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MP4 7734 kb)

(MP4 3621 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arbucci, R., Picano, E. (2023). Strain and Real-Time Three-Dimensional Stress Echocardiography. In: Picano, E. (eds) Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-031-31062-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31062-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31061-4

  • Online ISBN: 978-3-031-31062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics