Skip to main content

Tendons and Ligaments

  • Chapter
  • First Online:
Elastography of the Musculoskeletal System

Abstract

Elastography is more and more used as an additional imaging modality to improve the diagnostic performance of conventional ultrasound in the evaluation of tendons and ligaments, both qualitatively with strain elastography and quantitatively with shear wave elastography. It can increase the accuracy in the diagnostic work-up, being also an interesting tool to be used in follow-up imaging to monitor treatment response. To date, few robust studies have proven the value of elastography, mostly on tendinopathies, with sonoelastography that might be particularly useful to identify mild tendinopathies that do not lead to substantial changes in B-mode ultrasound findings. Conversely, there is still scarce evidence of its clinical value to image ligaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taljanovic MS, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3). https://doi.org/10.1148/rg.2017160116.

  2. Ooi CC, Malliaras P, Schneider ME, Connell DA. ‘Soft, hard, or just right?’ Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2014;43:1. https://doi.org/10.1007/s00256-013-1695-3.

    Article  CAS  Google Scholar 

  3. Sigrist RMS, Liau J, el Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303. https://doi.org/10.7150/thno.18650.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):1435. https://doi.org/10.1259/bjr/93042867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272(3). https://doi.org/10.1148/radiol.14121765.

  6. Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography. 2017;36(3):185. https://doi.org/10.14366/usg.16053.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43(10):850.

    Article  CAS  PubMed  Google Scholar 

  8. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol. 2011;52(1). https://doi.org/10.1258/ar.2010.100190.

  9. Sconfienza LM, et al. Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol. 2018;28(12):5338. https://doi.org/10.1007/s00330-018-5474-3.

    Article  PubMed  Google Scholar 

  10. Götschi T, et al. Region- and degeneration dependent stiffness distribution in intervertebral discs derived by shear wave elastography. J Biomech. 2021;121:110395. https://doi.org/10.1016/j.jbiomech.2021.110395.

    Article  PubMed  Google Scholar 

  11. Gitto S, Messina C, Vitale N, Albano D, Sconfienza LM. Quantitative musculoskeletal ultrasound. Semin Musculoskelet Radiol. 2020;24(4):367. https://doi.org/10.1055/s-0040-1709720.

    Article  PubMed  Google Scholar 

  12. Albano D, et al. Posterior tibial tendon dysfunction: clinical and magnetic resonance imaging findings having histology as reference standard. Eur J Radiol. 2018;99:55. https://doi.org/10.1016/j.ejrad.2017.12.005.

    Article  PubMed  Google Scholar 

  13. Finnamore E, Waugh C, Solomons L, Ryan M, West C, Scott A. Transverse tendon stiffness is reduced in people with Achilles tendinopathy: a cross-sectional study. PLoS One. 2019;14(2):e0211863. https://doi.org/10.1371/journal.pone.0211863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gitto S, et al. Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review. Radiol Med. 2020;125(5):481. https://doi.org/10.1007/s11547-020-01141-x.

    Article  PubMed  Google Scholar 

  15. Albano D, et al. Magnetic resonance and ultrasound in Achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol. 2017;95:130. https://doi.org/10.1016/j.ejrad.2017.08.006.

    Article  PubMed  Google Scholar 

  16. Slane LC, Martin J, DeWall R, Thelen D, Lee K. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur Radiol. 2017;27(2):474. https://doi.org/10.1007/s00330-016-4409-0.

    Article  PubMed  Google Scholar 

  17. Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging. 2018;9(5):791. https://doi.org/10.1007/s13244-018-0642-1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Siu WL, Chan CH, Lam CH, Lee CM, Ying M. Sonographic evaluation of the effect of long-term exercise on Achilles tendon stiffness using shear wave elastography. J Sci Med Sport. 2016;19(11):883. https://doi.org/10.1016/j.jsams.2016.02.013.

    Article  PubMed  Google Scholar 

  19. Ruan Z, et al. Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med. 2015;8(1):1043.

    PubMed  PubMed Central  Google Scholar 

  20. Coombes BK, et al. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. 2018;28(3):1201. https://doi.org/10.1111/sms.12986.

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Cheng Y, Liang Z, Zhang L, Deng X. Quantitative shear wave elastography compared to standard ultrasound (qualitative B-mode grayscale sonography and quantitative power Doppler) for evaluation of achillotendinopathy in treatment-naïve individuals: a cross-sectional study. Adv Clin Exp Med. 2022;31:847.

    Article  PubMed  Google Scholar 

  22. Saha D, Prakash M, Sinha A, Singh T, Dogra S, Sharma A. Role of shear-wave elastography in achilles tendon in psoriatic arthritis and its correlation with disease severity score, psoriasis area and severity index. Indian J Radiol Imaging. 2022;32:159.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3). https://doi.org/10.1148/radiol.14140434.

  24. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med. 2013;32(3):449. https://doi.org/10.7863/jum.2013.32.3.449.

    Article  PubMed  Google Scholar 

  25. Busilacchi A, et al. Real-time sonoelastography as novel follow-up method in Achilles tendon surgery. Knee Surgery, Sports Traumatology, Arthroscopy. 2016;24(7):2124. https://doi.org/10.1007/s00167-014-3484-5.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang LN, et al. Evaluation of elastic stiffness in healing Achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography. Med Sci Monit. 2016;22:1186. https://doi.org/10.12659/MSM.895674.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Breda SJ, van der Vlist A, de Vos RJ, Krestin GP, Oei EHG. The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy—a case-control study. Eur Radiol. 2020;30(11):5942. https://doi.org/10.1007/s00330-020-06952-0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lian KJ, Holen LE, Bahr R. Relationship between symptoms of jumper’s knee and the ultrasound characteristics of the patellar tendon among high level male volleyball players. Scand J Med Sci Sports. 1996;6(5):291. https://doi.org/10.1111/j.1600-0838.1996.tb00473.x.

    Article  CAS  PubMed  Google Scholar 

  29. Cook JL, et al. Patellar tendon ultrasonography in asymptomatic active athletes reveals hypoechoic regions: a study of 320 tendons. Clin J Sport Med. 1998;8(2):73. https://doi.org/10.1097/00042752-199804000-00001.

    Article  CAS  PubMed  Google Scholar 

  30. Dirrichs T, Quack V, Gatz M, Tingart M, Kuhl CK, Schrading S. Shear Wave Elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol. 2016;23(10):1204. https://doi.org/10.1016/j.acra.2016.05.012.

    Article  PubMed  Google Scholar 

  31. Rist H-J, Mauch M. Quantified TDI elastography of the patellar tendon in athletes. Sportverletz Sportschaden. 2012;26(1):27.

    PubMed  Google Scholar 

  32. Ooi CC, et al. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport. 2016;19(5):373. https://doi.org/10.1016/j.jsams.2015.06.003.

    Article  PubMed  Google Scholar 

  33. Zhang ZJ, Ng GYF, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One. 2014;9(10):e108337. https://doi.org/10.1371/journal.pone.0108337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Porta F, Damjanov N, Galluccio F, Iagnocco A, Matucci-Cerinic M. Ultrasound elastography is a reproducible and feasible tool for the evaluation of the patellar tendon in healthy subjects. Int J Rheum Dis. 2014;17(7):762. https://doi.org/10.1111/1756-185X.12241.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang C, Duan L, Liu Q, Zhang W. Correction to: Application of shear wave elastographjy and B-mode ultrasound in patellar tendinopathy after extracorporeal shockwave therapy. J Med Ultrasonics. 2020;47(3):477. https://doi.org/10.1007/s10396-020-01025-7.

    Article  Google Scholar 

  36. Peers KHE, Lysens RJJ. Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations. Sports Med. 2005;35(1):71. https://doi.org/10.2165/00007256-200535010-00006.

    Article  PubMed  Google Scholar 

  37. Roe Y, Bautz-Holter E, Juel NG, Soberg HL. Identification of relevant international classification of functioning, disability and health categories in patients with shoulder pain: a cross-sectional study. J Rehabil Med. 2013;45(7):662. https://doi.org/10.2340/16501977-1159.

    Article  PubMed  Google Scholar 

  38. Choi S, Kim MK, Kim GM, Roh YH, Hwang IK, Kang H. Factors associated with clinical and structural outcomes after arthroscopic rotator cuff repair with a suture bridge technique in medium, large, and massive tears. J Shoulder Elbow Surg. 2014;23(11):1675. https://doi.org/10.1016/j.jse.2014.02.021.

    Article  PubMed  Google Scholar 

  39. Serpi F, Albano D, Rapisarda S, Chianca V, Sconfienza LM, Messina C. Shoulder ultrasound: current concepts and future perspectives. J Ultrasonography. 2021;21(85):e154. https://doi.org/10.15557/JoU.2021.0025.

    Article  Google Scholar 

  40. Albano D, et al. Imaging of usual and unusual complication of rotator cuff repair. J Comput Assist Tomogr. 2019;43(3):359. https://doi.org/10.1097/RCT.0000000000000846.

    Article  PubMed  Google Scholar 

  41. Lawrence RL, et al. Ultrasound shear wave elastography and its association with rotator cuff tear characteristics. JSES Int. 2021;5(3):500. https://doi.org/10.1016/j.jseint.2020.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kocyigit F, Kuyucu E, Kocyigit A, Herek DT, Savkin R, Aslan UB. Investigation of biomechanical characteristics of intact supraspinatus tendons in subacromial impingement syndrome. Am J Phys Med Rehabil. 2016;95(8):588. https://doi.org/10.1097/PHM.0000000000000450.

    Article  PubMed  Google Scholar 

  43. Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Flück M, Pfirrmann CWA. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016;278(2):465. https://doi.org/10.1148/radiol.2015150908.

    Article  PubMed  Google Scholar 

  44. Hou SW, Merkle AN, Babb JS, McCabe R, Gyftopoulos S, Adler RS. Shear wave ultrasound elastographic evaluation of the rotator cuff tendon. J Ultrasound Med. 2017;36:95. https://doi.org/10.7863/ultra.15.07041.

    Article  PubMed  Google Scholar 

  45. Seo JB, Yoo JS, Ryu JW. The accuracy of sonoelastography in fatty degeneration of the supraspinatus: a comparison of magnetic resonance imaging and conventional ultrasonography. J Ultrasound. 2014;17(4):279. https://doi.org/10.1007/s40477-014-0064-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee SU, Joo SY, Kim SK, Lee SH, Park SR, Jeong C. Real-time sonoelastography in the diagnosis of rotator cuff tendinopathy. J Shoulder Elbow Surg. 2016;25(5):723. https://doi.org/10.1016/j.jse.2015.10.019.

    Article  PubMed  Google Scholar 

  47. Krepkin K, Bruno M, Raya JG, Adler RS, Gyftopoulos S. Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study. Skeletal Radiol. 2017;46(2):191. https://doi.org/10.1007/s00256-016-2534-0.

    Article  PubMed  Google Scholar 

  48. Lin YH, Chiou HJ, Wang HK, Lai YC, Chou YH, Chang CY. Management of rotator cuff calcific tendinosis guided by ultrasound elastography. J Chin Med Assoc. 2015;78(10):603. https://doi.org/10.1016/j.jcma.2015.05.006.

    Article  PubMed  Google Scholar 

  49. Beeler S, Ek ETH, Gerber C. A comparative analysis of fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears and suprascapular neuropathy. J Shoulder Elbow Surg. 2013;22(11):1371. https://doi.org/10.1016/j.jse.2013.01.028.

    Article  Google Scholar 

  50. Yoo SJ, Lee S, Song Y, Kim CK, Lee BG, Bae J. Elasticity of torn supraspinatus tendons measured by shear wave elastography: a potential surrogate marker of chronicity? Ultrasonography. 2020;39(2):144. https://doi.org/10.14366/usg.19035.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Albano D, Coppola A, Gitto S, Rapisarda S, Messina C, Sconfienza LM. Imaging of calcific tendinopathy around the shoulder: usual and unusual presentations and common pitfalls. Radiol Med. 2021;126(4):608. https://doi.org/10.1007/s11547-020-01300-0.

    Article  PubMed  Google Scholar 

  52. Chianca V, et al. Rotator cuff calcific tendinopathy: from diagnosis to treatment. Acta Biomed. 2018;89:186. https://doi.org/10.23750/abm.v89i1-S.7022.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sconfienza LM, et al. Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part VI, foot and ankle. Eur Radiol. 2022;32(2):1488. https://doi.org/10.1007/s00330-021-08125-z.

    Article  Google Scholar 

  54. Silvestri E, et al. Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Med. 2018;123(4):314. https://doi.org/10.1007/s11547-017-0842-7.

    Article  PubMed  Google Scholar 

  55. Tortora S, et al. Ultrasound-guided musculoskeletal interventional procedures around the shoulder. J Ultrason. 2021;21(85):e162. https://doi.org/10.15557/JOU.2021.0026.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma KL, Wang HQ. Management of lateral epicondylitis: a narrative literature review. Pain Res Manag. 2020;2020:6965381. https://doi.org/10.1155/2020/6965381.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee HS, et al. Musicians’ medicine: musculoskeletal problems in string players. Clin Orthop Surg. 2013;5(3):155. https://doi.org/10.4055/cios.2013.5.3.155.

    Article  PubMed  PubMed Central  Google Scholar 

  58. de Zordo T, et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. Am J Roentgenol. 2009;193(1):180. https://doi.org/10.2214/AJR.08.2020.

    Article  Google Scholar 

  59. Ahn KS, Kang CH, Hong SJ, Jeong WK. Ultrasound elastography of lateral epicondylosis: clinical feasibility of quantitative elastographic measurements. Am J Roentgenol. 2014;202(5):1094. https://doi.org/10.2214/AJR.13.11003.

    Article  Google Scholar 

  60. Park GY, Kwon DR, Park JH. Diagnostic confidence of sonoelastography as adjunct to greyscale ultrasonography in lateral elbow tendinopathy. Chin Med J (Engl). 2014;127(17):3110. https://doi.org/10.3760/cma.j.issn.0366-6999.20140209.

    Article  PubMed  Google Scholar 

  61. Kocyigit F, et al. Association of real-time sonoelastography findings with clinical parameters in lateral epicondylitis. Rheumatol Int. 2016;36(1):91. https://doi.org/10.1007/s00296-015-3356-4.

    Article  PubMed  Google Scholar 

  62. Klauser AS, et al. Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation. Eur Radiol. 2017;27(8):3460. https://doi.org/10.1007/s00330-016-4711-x.

    Article  PubMed  Google Scholar 

  63. Clarke AW, Ahmad M, Curtis M, Connell DA. Lateral elbow tendinopathy: correlation of ultrasound findings with pain and functional disability. Am J Sports Med. 2010;38(6):1209. https://doi.org/10.1177/0363546509359066.

    Article  PubMed  Google Scholar 

  64. Klauser AS, et al. Sonoelastography of the common flexor tendon of the elbow with histologic agreement: a cadaveric study. Radiology. 2017;283(2):486. https://doi.org/10.1148/radiol.2016160139.

    Article  PubMed  Google Scholar 

  65. Snoj Ž, Wu CH, Taljanovic MS, Dumić-Čule I, Drakonaki EE, Klauser AS. Ultrasound elastography in musculoskeletal radiology: past, present, and future. Semin Musculoskelet Radiol. 2020;24(2):156. https://doi.org/10.1055/s-0039-3402746.

    Article  PubMed  Google Scholar 

  66. Suh CH, et al. Systematic review and meta-analysis of magnetic resonance imaging features for diagnosis of adhesive capsulitis of the shoulder. Eur Radiol. 2019;29(2):566. https://doi.org/10.1007/s00330-018-5604-y.

    Article  PubMed  Google Scholar 

  67. Wu H, et al. The role of grey-scale ultrasound in the diagnosis of adhesive capsulitis of the shoulder: a systematic review and meta-analysis. Med Ultrason. 2020;22(3):305. https://doi.org/10.11152/mu-2430.

    Article  PubMed  Google Scholar 

  68. Wu CH, Chen WS, Wang TG. Elasticity of the coracohumeral ligament in patients with adhesive capsulitis of the shoulder. Radiology. 2016;278(2):458. https://doi.org/10.1148/radiol.2015150888.

    Article  PubMed  Google Scholar 

  69. McKean D, et al. Elasticity of the coracohumeral ligament in patients with frozen shoulder following rotator interval injection: a case series. J Ultrason. 2020;20(83):e300. https://doi.org/10.15557/JoU.2020.0052.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kanazawa K, et al. Elastic changes of the coracohumeral ligament evaluated with shear wave elastography. Open Orthop J. 2018;12(1):427. https://doi.org/10.2174/1874325001812010427.

    Article  Google Scholar 

  71. Zhang J, Zhang L, Guo F, Zhang T. Shear wave elastography of the coracohumeral ligament with frozen shoulder in different stages. J Ultrasound Med. 2022;41(10):2527. https://doi.org/10.1002/jum.15942.

    Article  PubMed  Google Scholar 

  72. Sconfienza LM, Chianca V, Messina C, Albano D, Pozzi G, Bazzocchi A. Upper limb interventions. Radiol Clin North Am. 2019;57(5):1073. https://doi.org/10.1016/j.rcl.2019.05.002.

    Article  PubMed  Google Scholar 

  73. Fong DTP, Hong Y, Chan LK, Yung PSH, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):73. https://doi.org/10.2165/00007256-200737010-00006.

    Article  PubMed  Google Scholar 

  74. Gimber LH, et al. Ultrasound shear wave elastography of the anterior talofibular and calcaneofibular ligaments in healthy subjects. J Ultrason. 2021;21(85):e86. https://doi.org/10.15557/JoU.2021.0017.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Golanó P, et al. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2010;18(5):577. https://doi.org/10.1007/s00167-010-1100-x.

    Article  Google Scholar 

  76. Rougereau G, et al. A preliminary study to assess the relevance of shear-wave elastography in characterizing biomechanical changes in the deltoid ligament complex in relation to ankle position. Foot Ankle Int. 2022;43(6):840.

    Article  PubMed  Google Scholar 

  77. Bollen S. Epidemiology of knee injuries: diagnosis and triage. Br J Sports Med. 2000;34(3):227. https://doi.org/10.1136/bjsm.34.3.227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gürün E, Aksakal M, Akdulum İ. Measuring stiffness of normal medial collateral ligament in healthy volunteers via shear wave elastography. Surg Radiol Anat. 2021;43(10):1673. https://doi.org/10.1007/s00276-021-02749-y.

    Article  PubMed  Google Scholar 

  79. Wadugodapitiya S, Sakamoto M, Tanaka M, Sakagami Y, Morise Y, Kobayashi K. Assessment of knee collateral ligament stiffness by strain ultrasound elastography. Biomed Mater Eng. 2022;33(5):337. https://doi.org/10.3233/BME-211282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morrey BF, An KN. Articular and ligamentous contributions to the stability of the elbow joint. Am J Sports Med. 1983;11(5):315. https://doi.org/10.1177/036354658301100506.

    Article  CAS  PubMed  Google Scholar 

  81. Gupta N, et al. Shear-wave elastography of the ulnar collateral ligament of the elbow in healthy volunteers: a pilot study. Skeletal Radiol. 2019;48(8):1241. https://doi.org/10.1007/s00256-019-3162-2.

    Article  PubMed  Google Scholar 

  82. Hattori H, et al. Changes in medial elbow elasticity and joint space gapping during maximal gripping: reliability and validity in evaluation of the medial elbow joint using ultrasound elastography. J Shoulder Elbow Surg. 2020;29(6):e245. https://doi.org/10.1016/j.jse.2019.11.005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Maria Sconfienza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albano, D., Basile, M., Gitto, S., Serpi, F., Messina, C., Sconfienza, L.M. (2023). Tendons and Ligaments. In: Marsico, S., Solano, A. (eds) Elastography of the Musculoskeletal System . Springer, Cham. https://doi.org/10.1007/978-3-031-31054-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31054-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31053-9

  • Online ISBN: 978-3-031-31054-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics