Abstract
Elastography is more and more used as an additional imaging modality to improve the diagnostic performance of conventional ultrasound in the evaluation of tendons and ligaments, both qualitatively with strain elastography and quantitatively with shear wave elastography. It can increase the accuracy in the diagnostic work-up, being also an interesting tool to be used in follow-up imaging to monitor treatment response. To date, few robust studies have proven the value of elastography, mostly on tendinopathies, with sonoelastography that might be particularly useful to identify mild tendinopathies that do not lead to substantial changes in B-mode ultrasound findings. Conversely, there is still scarce evidence of its clinical value to image ligaments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Taljanovic MS, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3). https://doi.org/10.1148/rg.2017160116.
Ooi CC, Malliaras P, Schneider ME, Connell DA. ‘Soft, hard, or just right?’ Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2014;43:1. https://doi.org/10.1007/s00256-013-1695-3.
Sigrist RMS, Liau J, el Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303. https://doi.org/10.7150/thno.18650.
Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):1435. https://doi.org/10.1259/bjr/93042867.
Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272(3). https://doi.org/10.1148/radiol.14121765.
Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography. 2017;36(3):185. https://doi.org/10.14366/usg.16053.
Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43(10):850.
Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol. 2011;52(1). https://doi.org/10.1258/ar.2010.100190.
Sconfienza LM, et al. Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol. 2018;28(12):5338. https://doi.org/10.1007/s00330-018-5474-3.
Götschi T, et al. Region- and degeneration dependent stiffness distribution in intervertebral discs derived by shear wave elastography. J Biomech. 2021;121:110395. https://doi.org/10.1016/j.jbiomech.2021.110395.
Gitto S, Messina C, Vitale N, Albano D, Sconfienza LM. Quantitative musculoskeletal ultrasound. Semin Musculoskelet Radiol. 2020;24(4):367. https://doi.org/10.1055/s-0040-1709720.
Albano D, et al. Posterior tibial tendon dysfunction: clinical and magnetic resonance imaging findings having histology as reference standard. Eur J Radiol. 2018;99:55. https://doi.org/10.1016/j.ejrad.2017.12.005.
Finnamore E, Waugh C, Solomons L, Ryan M, West C, Scott A. Transverse tendon stiffness is reduced in people with Achilles tendinopathy: a cross-sectional study. PLoS One. 2019;14(2):e0211863. https://doi.org/10.1371/journal.pone.0211863.
Gitto S, et al. Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review. Radiol Med. 2020;125(5):481. https://doi.org/10.1007/s11547-020-01141-x.
Albano D, et al. Magnetic resonance and ultrasound in Achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol. 2017;95:130. https://doi.org/10.1016/j.ejrad.2017.08.006.
Slane LC, Martin J, DeWall R, Thelen D, Lee K. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur Radiol. 2017;27(2):474. https://doi.org/10.1007/s00330-016-4409-0.
Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging. 2018;9(5):791. https://doi.org/10.1007/s13244-018-0642-1.
Siu WL, Chan CH, Lam CH, Lee CM, Ying M. Sonographic evaluation of the effect of long-term exercise on Achilles tendon stiffness using shear wave elastography. J Sci Med Sport. 2016;19(11):883. https://doi.org/10.1016/j.jsams.2016.02.013.
Ruan Z, et al. Elasticity of healthy Achilles tendon decreases with the increase of age as determined by acoustic radiation force impulse imaging. Int J Clin Exp Med. 2015;8(1):1043.
Coombes BK, et al. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. 2018;28(3):1201. https://doi.org/10.1111/sms.12986.
Chen L, Cheng Y, Liang Z, Zhang L, Deng X. Quantitative shear wave elastography compared to standard ultrasound (qualitative B-mode grayscale sonography and quantitative power Doppler) for evaluation of achillotendinopathy in treatment-naïve individuals: a cross-sectional study. Adv Clin Exp Med. 2022;31:847.
Saha D, Prakash M, Sinha A, Singh T, Dogra S, Sharma A. Role of shear-wave elastography in achilles tendon in psoriatic arthritis and its correlation with disease severity score, psoriasis area and severity index. Indian J Radiol Imaging. 2022;32:159.
Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3). https://doi.org/10.1148/radiol.14140434.
Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med. 2013;32(3):449. https://doi.org/10.7863/jum.2013.32.3.449.
Busilacchi A, et al. Real-time sonoelastography as novel follow-up method in Achilles tendon surgery. Knee Surgery, Sports Traumatology, Arthroscopy. 2016;24(7):2124. https://doi.org/10.1007/s00167-014-3484-5.
Zhang LN, et al. Evaluation of elastic stiffness in healing Achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography. Med Sci Monit. 2016;22:1186. https://doi.org/10.12659/MSM.895674.
Breda SJ, van der Vlist A, de Vos RJ, Krestin GP, Oei EHG. The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy—a case-control study. Eur Radiol. 2020;30(11):5942. https://doi.org/10.1007/s00330-020-06952-0.
Lian KJ, Holen LE, Bahr R. Relationship between symptoms of jumper’s knee and the ultrasound characteristics of the patellar tendon among high level male volleyball players. Scand J Med Sci Sports. 1996;6(5):291. https://doi.org/10.1111/j.1600-0838.1996.tb00473.x.
Cook JL, et al. Patellar tendon ultrasonography in asymptomatic active athletes reveals hypoechoic regions: a study of 320 tendons. Clin J Sport Med. 1998;8(2):73. https://doi.org/10.1097/00042752-199804000-00001.
Dirrichs T, Quack V, Gatz M, Tingart M, Kuhl CK, Schrading S. Shear Wave Elastography (SWE) for the evaluation of patients with tendinopathies. Acad Radiol. 2016;23(10):1204. https://doi.org/10.1016/j.acra.2016.05.012.
Rist H-J, Mauch M. Quantified TDI elastography of the patellar tendon in athletes. Sportverletz Sportschaden. 2012;26(1):27.
Ooi CC, et al. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport. 2016;19(5):373. https://doi.org/10.1016/j.jsams.2015.06.003.
Zhang ZJ, Ng GYF, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One. 2014;9(10):e108337. https://doi.org/10.1371/journal.pone.0108337.
Porta F, Damjanov N, Galluccio F, Iagnocco A, Matucci-Cerinic M. Ultrasound elastography is a reproducible and feasible tool for the evaluation of the patellar tendon in healthy subjects. Int J Rheum Dis. 2014;17(7):762. https://doi.org/10.1111/1756-185X.12241.
Zhang C, Duan L, Liu Q, Zhang W. Correction to: Application of shear wave elastographjy and B-mode ultrasound in patellar tendinopathy after extracorporeal shockwave therapy. J Med Ultrasonics. 2020;47(3):477. https://doi.org/10.1007/s10396-020-01025-7.
Peers KHE, Lysens RJJ. Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations. Sports Med. 2005;35(1):71. https://doi.org/10.2165/00007256-200535010-00006.
Roe Y, Bautz-Holter E, Juel NG, Soberg HL. Identification of relevant international classification of functioning, disability and health categories in patients with shoulder pain: a cross-sectional study. J Rehabil Med. 2013;45(7):662. https://doi.org/10.2340/16501977-1159.
Choi S, Kim MK, Kim GM, Roh YH, Hwang IK, Kang H. Factors associated with clinical and structural outcomes after arthroscopic rotator cuff repair with a suture bridge technique in medium, large, and massive tears. J Shoulder Elbow Surg. 2014;23(11):1675. https://doi.org/10.1016/j.jse.2014.02.021.
Serpi F, Albano D, Rapisarda S, Chianca V, Sconfienza LM, Messina C. Shoulder ultrasound: current concepts and future perspectives. J Ultrasonography. 2021;21(85):e154. https://doi.org/10.15557/JoU.2021.0025.
Albano D, et al. Imaging of usual and unusual complication of rotator cuff repair. J Comput Assist Tomogr. 2019;43(3):359. https://doi.org/10.1097/RCT.0000000000000846.
Lawrence RL, et al. Ultrasound shear wave elastography and its association with rotator cuff tear characteristics. JSES Int. 2021;5(3):500. https://doi.org/10.1016/j.jseint.2020.11.008.
Kocyigit F, Kuyucu E, Kocyigit A, Herek DT, Savkin R, Aslan UB. Investigation of biomechanical characteristics of intact supraspinatus tendons in subacromial impingement syndrome. Am J Phys Med Rehabil. 2016;95(8):588. https://doi.org/10.1097/PHM.0000000000000450.
Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Flück M, Pfirrmann CWA. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016;278(2):465. https://doi.org/10.1148/radiol.2015150908.
Hou SW, Merkle AN, Babb JS, McCabe R, Gyftopoulos S, Adler RS. Shear wave ultrasound elastographic evaluation of the rotator cuff tendon. J Ultrasound Med. 2017;36:95. https://doi.org/10.7863/ultra.15.07041.
Seo JB, Yoo JS, Ryu JW. The accuracy of sonoelastography in fatty degeneration of the supraspinatus: a comparison of magnetic resonance imaging and conventional ultrasonography. J Ultrasound. 2014;17(4):279. https://doi.org/10.1007/s40477-014-0064-y.
Lee SU, Joo SY, Kim SK, Lee SH, Park SR, Jeong C. Real-time sonoelastography in the diagnosis of rotator cuff tendinopathy. J Shoulder Elbow Surg. 2016;25(5):723. https://doi.org/10.1016/j.jse.2015.10.019.
Krepkin K, Bruno M, Raya JG, Adler RS, Gyftopoulos S. Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study. Skeletal Radiol. 2017;46(2):191. https://doi.org/10.1007/s00256-016-2534-0.
Lin YH, Chiou HJ, Wang HK, Lai YC, Chou YH, Chang CY. Management of rotator cuff calcific tendinosis guided by ultrasound elastography. J Chin Med Assoc. 2015;78(10):603. https://doi.org/10.1016/j.jcma.2015.05.006.
Beeler S, Ek ETH, Gerber C. A comparative analysis of fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears and suprascapular neuropathy. J Shoulder Elbow Surg. 2013;22(11):1371. https://doi.org/10.1016/j.jse.2013.01.028.
Yoo SJ, Lee S, Song Y, Kim CK, Lee BG, Bae J. Elasticity of torn supraspinatus tendons measured by shear wave elastography: a potential surrogate marker of chronicity? Ultrasonography. 2020;39(2):144. https://doi.org/10.14366/usg.19035.
Albano D, Coppola A, Gitto S, Rapisarda S, Messina C, Sconfienza LM. Imaging of calcific tendinopathy around the shoulder: usual and unusual presentations and common pitfalls. Radiol Med. 2021;126(4):608. https://doi.org/10.1007/s11547-020-01300-0.
Chianca V, et al. Rotator cuff calcific tendinopathy: from diagnosis to treatment. Acta Biomed. 2018;89:186. https://doi.org/10.23750/abm.v89i1-S.7022.
Sconfienza LM, et al. Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part VI, foot and ankle. Eur Radiol. 2022;32(2):1488. https://doi.org/10.1007/s00330-021-08125-z.
Silvestri E, et al. Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Med. 2018;123(4):314. https://doi.org/10.1007/s11547-017-0842-7.
Tortora S, et al. Ultrasound-guided musculoskeletal interventional procedures around the shoulder. J Ultrason. 2021;21(85):e162. https://doi.org/10.15557/JOU.2021.0026.
Ma KL, Wang HQ. Management of lateral epicondylitis: a narrative literature review. Pain Res Manag. 2020;2020:6965381. https://doi.org/10.1155/2020/6965381.
Lee HS, et al. Musicians’ medicine: musculoskeletal problems in string players. Clin Orthop Surg. 2013;5(3):155. https://doi.org/10.4055/cios.2013.5.3.155.
de Zordo T, et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. Am J Roentgenol. 2009;193(1):180. https://doi.org/10.2214/AJR.08.2020.
Ahn KS, Kang CH, Hong SJ, Jeong WK. Ultrasound elastography of lateral epicondylosis: clinical feasibility of quantitative elastographic measurements. Am J Roentgenol. 2014;202(5):1094. https://doi.org/10.2214/AJR.13.11003.
Park GY, Kwon DR, Park JH. Diagnostic confidence of sonoelastography as adjunct to greyscale ultrasonography in lateral elbow tendinopathy. Chin Med J (Engl). 2014;127(17):3110. https://doi.org/10.3760/cma.j.issn.0366-6999.20140209.
Kocyigit F, et al. Association of real-time sonoelastography findings with clinical parameters in lateral epicondylitis. Rheumatol Int. 2016;36(1):91. https://doi.org/10.1007/s00296-015-3356-4.
Klauser AS, et al. Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation. Eur Radiol. 2017;27(8):3460. https://doi.org/10.1007/s00330-016-4711-x.
Clarke AW, Ahmad M, Curtis M, Connell DA. Lateral elbow tendinopathy: correlation of ultrasound findings with pain and functional disability. Am J Sports Med. 2010;38(6):1209. https://doi.org/10.1177/0363546509359066.
Klauser AS, et al. Sonoelastography of the common flexor tendon of the elbow with histologic agreement: a cadaveric study. Radiology. 2017;283(2):486. https://doi.org/10.1148/radiol.2016160139.
Snoj Ž, Wu CH, Taljanovic MS, Dumić-Čule I, Drakonaki EE, Klauser AS. Ultrasound elastography in musculoskeletal radiology: past, present, and future. Semin Musculoskelet Radiol. 2020;24(2):156. https://doi.org/10.1055/s-0039-3402746.
Suh CH, et al. Systematic review and meta-analysis of magnetic resonance imaging features for diagnosis of adhesive capsulitis of the shoulder. Eur Radiol. 2019;29(2):566. https://doi.org/10.1007/s00330-018-5604-y.
Wu H, et al. The role of grey-scale ultrasound in the diagnosis of adhesive capsulitis of the shoulder: a systematic review and meta-analysis. Med Ultrason. 2020;22(3):305. https://doi.org/10.11152/mu-2430.
Wu CH, Chen WS, Wang TG. Elasticity of the coracohumeral ligament in patients with adhesive capsulitis of the shoulder. Radiology. 2016;278(2):458. https://doi.org/10.1148/radiol.2015150888.
McKean D, et al. Elasticity of the coracohumeral ligament in patients with frozen shoulder following rotator interval injection: a case series. J Ultrason. 2020;20(83):e300. https://doi.org/10.15557/JoU.2020.0052.
Kanazawa K, et al. Elastic changes of the coracohumeral ligament evaluated with shear wave elastography. Open Orthop J. 2018;12(1):427. https://doi.org/10.2174/1874325001812010427.
Zhang J, Zhang L, Guo F, Zhang T. Shear wave elastography of the coracohumeral ligament with frozen shoulder in different stages. J Ultrasound Med. 2022;41(10):2527. https://doi.org/10.1002/jum.15942.
Sconfienza LM, Chianca V, Messina C, Albano D, Pozzi G, Bazzocchi A. Upper limb interventions. Radiol Clin North Am. 2019;57(5):1073. https://doi.org/10.1016/j.rcl.2019.05.002.
Fong DTP, Hong Y, Chan LK, Yung PSH, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):73. https://doi.org/10.2165/00007256-200737010-00006.
Gimber LH, et al. Ultrasound shear wave elastography of the anterior talofibular and calcaneofibular ligaments in healthy subjects. J Ultrason. 2021;21(85):e86. https://doi.org/10.15557/JoU.2021.0017.
Golanó P, et al. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2010;18(5):577. https://doi.org/10.1007/s00167-010-1100-x.
Rougereau G, et al. A preliminary study to assess the relevance of shear-wave elastography in characterizing biomechanical changes in the deltoid ligament complex in relation to ankle position. Foot Ankle Int. 2022;43(6):840.
Bollen S. Epidemiology of knee injuries: diagnosis and triage. Br J Sports Med. 2000;34(3):227. https://doi.org/10.1136/bjsm.34.3.227.
Gürün E, Aksakal M, Akdulum İ. Measuring stiffness of normal medial collateral ligament in healthy volunteers via shear wave elastography. Surg Radiol Anat. 2021;43(10):1673. https://doi.org/10.1007/s00276-021-02749-y.
Wadugodapitiya S, Sakamoto M, Tanaka M, Sakagami Y, Morise Y, Kobayashi K. Assessment of knee collateral ligament stiffness by strain ultrasound elastography. Biomed Mater Eng. 2022;33(5):337. https://doi.org/10.3233/BME-211282.
Morrey BF, An KN. Articular and ligamentous contributions to the stability of the elbow joint. Am J Sports Med. 1983;11(5):315. https://doi.org/10.1177/036354658301100506.
Gupta N, et al. Shear-wave elastography of the ulnar collateral ligament of the elbow in healthy volunteers: a pilot study. Skeletal Radiol. 2019;48(8):1241. https://doi.org/10.1007/s00256-019-3162-2.
Hattori H, et al. Changes in medial elbow elasticity and joint space gapping during maximal gripping: reliability and validity in evaluation of the medial elbow joint using ultrasound elastography. J Shoulder Elbow Surg. 2020;29(6):e245. https://doi.org/10.1016/j.jse.2019.11.005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Albano, D., Basile, M., Gitto, S., Serpi, F., Messina, C., Sconfienza, L.M. (2023). Tendons and Ligaments. In: Marsico, S., Solano, A. (eds) Elastography of the Musculoskeletal System . Springer, Cham. https://doi.org/10.1007/978-3-031-31054-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-31054-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31053-9
Online ISBN: 978-3-031-31054-6
eBook Packages: MedicineMedicine (R0)