Skip to main content

Skin and Soft Parts Benign Pathology

  • Chapter
  • First Online:
Elastography of the Musculoskeletal System
  • 188 Accesses

Abstract

Elastography is a recently developed ultrasound technique applicable to various medical specialties. It provides information on the physical properties of tissues in the context of physiologic and pathologic alterations. In this review, we explain the physical principles of the method, the information provided by the different elastography techniques, and its new applications in clinical dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alix-Panabieres C, Magliocco A, Cortes-Hernandez LE, Eslami-S Z, Franklin D, Messina JL. Detection of cancer metastasis: past, present and future. Clin Exp Metastasis. 2022;39(1):21–8.

    Article  PubMed  Google Scholar 

  2. Egeblad M, Rasch M, Weaver V. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell. 2005;8:175–6.

    Article  CAS  PubMed  Google Scholar 

  4. Oberai A, Gokhale N, Goenezen S, Barbone P, Hall T, Sommer A, et al. Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol. 2009;54:1191–207.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garra B. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007;23:255–68.

    Article  PubMed  Google Scholar 

  6. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas J, Gilja O, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 2013;34:238–53.

    Article  CAS  PubMed  Google Scholar 

  7. Alfageme F, Cerezo E, Roustan G. Real-time elastography in inflammatory skin diseases: a Primer. Ultrasound Medi Biol. 2015;41:S82–3.

    Article  Google Scholar 

  8. Wells P, Liang H. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface. 2011;8:1521–49.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Housden R, Chen L, Gee A, Treece G, Uff C, Fromageau J, et al. A new method for the acquisition of ultrasonic strain image volumes. Ultrasound Med Biol. 2011;37:434–41.

    Article  PubMed  Google Scholar 

  10. Sarvazyan A, Rudenko O, Swanson S, Fowlkes J, Emelianov S. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–35.

    Article  CAS  PubMed  Google Scholar 

  11. Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34:169–84.

    Article  CAS  PubMed  Google Scholar 

  12. Havre R, Waage J, Gilja O, Odegaard S, Nesje L. Realtime elastography: Strain ratio measurements are influenced by the position of the reference area. Ultraschall Med. 2012;33:559–68.

    Article  CAS  PubMed  Google Scholar 

  13. Palmeri M, Nightingale R. Acoustic radiation force-based elasticity imaging methods. Interface Focus. 2011;1:553–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thitaikumar A, Ophir J. Effect of lesion boundary conditions on axial strain elastograms: a parametric study. Ultrasound Med Biol. 2007;33:1463–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coutts L, Miller N, Harland C, Bamber J. Feasibility of skin surface elastography by tracking skin surface topography. J Biomed Opt. 2013;18:121513.

    Article  PubMed  Google Scholar 

  16. Osanai O, Ohtsuka M, Hotta M, Kitaharai T, Takema Y. A new method for the visualization and quantification of internal skin elasticity by ultrasound imaging. Skin Res Technol. 2011;17:270–7.

    Article  PubMed  Google Scholar 

  17. Wortsman X. Sonography of the nail. In: Wortsman X, Jemec GBE, editors. Dermatologic ultrasound with clinical and histological correlation. New York: Springer; 2013. p. 421.

    Chapter  Google Scholar 

  18. Bhatia K, Rasalkar D, Lee Y, Wong K, King A, Yuen Y, et al. Real-time qualitative ultrasound elastography of miscellaneous non-nodal neck masses: applications and limitations. Ultrasound Med Biol. 2010;36:1644–52.

    Article  PubMed  Google Scholar 

  19. Bhatia K, Yuen E, Cho C, Tong C, Lee Y, Ahuja A. A pilot study evaluating real-time shear wave ultrasound elastography of miscellaneous non-nodal neck masses in a routine head and neck ultrasound clinic. Ultrasound Med Biol. 2012;38:933–42.

    Article  PubMed  Google Scholar 

  20. Park J, Chae I, Kwon D. Utility of sonoelastography in differentiating ruptured from unruptured epidermal cysts and implications for patient care. J Ultrasound Med. 2015;34:1175–81.

    Article  PubMed  Google Scholar 

  21. Dasgeb B, Morris MA, Mehregan D, Siegel EL. Quantified ultrasound elastography in the assessment of cutaneous carcinoma. Br J Radiol. 2015;88:2015034.

    Article  Google Scholar 

  22. Botar C, Bolboaca S, Cosgarea R, Şenilă S, Rogojan L, Lenghel M, et al. Doppler ultrasound and strain elastography in the assessment of cutaneous melanoma: preliminary results. Med Ultrason. 2015;17:509–14.

    Google Scholar 

  23. Liang JF, Feng MC, Luo PP, Guan JY, Chen GF, Wu SY, Wang J, Feng MY. High-frequency ultrasound and shear wave elastography in quantitative differential diagnosis of high-risk and low-risk basal cell carcinomas. J Ultrasound Med. 2022;41:1447–54.

    Article  PubMed  Google Scholar 

  24. Alfageme F, Salgüero I, Nájera L, Suarez ML, Roustan G. Increased marginal stiffness differentiates infiltrative from noninfiltrative cutaneous basal cell carcinomas in the facial area: a prospective study. J Ultrasound Med. 2019;38:1841–5.

    Article  PubMed  Google Scholar 

  25. Lassau N, Lamuraglia M, Koscielny S, Spatz A, Roche A, Leclere J, et al. Prognostic value of angiogenesis evaluated with high frequency and colour Doppler sonography for preoperative assessment of primary cutaneous melanomas: correlation with recurrence after a 5 year follow-up period. Cancer Imaging. 2006;6(1):24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hinz T, Wenzel J, Schmid-Wendtner M. Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma? J Am Acad Dermatol. 2011;65:424–6.

    Article  PubMed  Google Scholar 

  27. Choi Y, Lee J, Baek J. Ultrasound elastography for evaluation of cervical lymph nodes. Ultrasonography. 2015;34:157–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan R, Xiao Y, He Q. Ultrasound elastography: its potential role in assessment of cervical lymphadenopathy. Acad Radiol. 2010;17:849.

    Article  PubMed  Google Scholar 

  29. Alam F, Naito K, Horiguchi J, Fukuda H, Tachikake T, Ito K. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. AJR Am J Roentgenol. 2008;191:604.

    Article  PubMed  Google Scholar 

  30. Bhatia K, Cho C, Tong C, Yuen E, Ahuja A. Shear wave elasticity imaging of cervical lymph nodes. Ultrasound Med Biol. 2012;38:195–201.

    Article  PubMed  Google Scholar 

  31. Hinz T, Hoeller T, Wenzel J, Bieber T, Schmid-Wendtner M. Real-time tissue elastography as promising diagnostic tool for diagnosis of lymph node metastases in patients with malignant melanoma: a prospective single-center experience. Dermatology. 2013;226:81–90.

    Article  CAS  PubMed  Google Scholar 

  32. Ogata D, Uematsu T, Yoshikawa S, Kiyohara Y. Accuracy of realtime ultrasound elastography in the differential diagnosis of lymph nodes in cutaneous malignant melanoma (CMM): a pilot study. Int J Clin Oncol. 2014;19:716–21.

    Article  PubMed  Google Scholar 

  33. Echeverría-García B, Borbujo J, Alfageme F. The use of ultrasound imaging in dermatology. Actas Dermosifiliogr. 2014;105:887–90.

    Article  PubMed  Google Scholar 

  34. Gaspari R, Blehar D, Mendoza M, Montoya A, Moon C, Polan D. Use of ultrasound elastography for skin and subcutaneous abscesses. J Ultrasound Med. 2009;28:855–60.

    Article  PubMed  Google Scholar 

  35. Cucoş M, Crişan M, Lenghel M, Dudea M, Croitoru R, Dudea S. Conventional ultrasonography and sonoelastography in the assessment of plaque psoriasis under topical corticosteroid treatment—work in progress. Med Ultrason. 2014;16:107–13.

    Article  PubMed  Google Scholar 

  36. Guazzaroni M, Ferrari D, Lamacchia F, Marisi V, Tatulli D, Marsico S, et al. Shear wave elastography and microvascular ultrasound in response evaluation to calcipotriol+betamethasone foam in plaque psoriasis. Postgrad Med J. 2021;97:16–22. https://doi.org/10.1136/postgradmedj-2020-138150.

    Article  CAS  PubMed  Google Scholar 

  37. Asil K, Yaldiz M. Diagnostic role of ultrasound elastography for nail bed involvement in psoriasis. Medicine (Baltimore). 2019;98(50):e17917. https://doi.org/10.1097/MD.0000000000017917.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iznardo H, Vilarrasa E, Roé E, Puig L. Shear wave elastography as a potential tool for quantitative assessment of sinus tracts fibrosis in hidradenitis suppurativa. J Eur Acad Dermatol Venereol. 2022; https://doi.org/10.1111/jdv.18116. Epub ahead of print.

  39. Iagnocco A, Kaloudi O, Perella C, Bandinelli F, Riccieri V, Vasile M, et al. Ultrasound elastography assessment of skin involvement in systemic sclerosis: Lights and shadows. J Rheumatol. 2010;37:1688–91.

    Article  PubMed  Google Scholar 

  40. Di Geso L, Filippucci E, Girolimetti R, Tardella M, Gutierrez M, de Angelis R, et al. Reliability of ultrasound measurements of dermal thickness at digits in systemic sclerosis: role of elastosonography. Clin Exp Rheumatol. 2011;29:926–32.

    PubMed  Google Scholar 

  41. Tumsatan P, Uscharapong M, Srinakarin J, Nanagara R, Khunkitti W. Role of shear wave elastography ultrasound in patients with systemic sclerosis. J Ultrasound. 2022; https://doi.org/10.1007/s40477-021-00637-0. Epub ahead of print.

  42. Kaya İslamoğlu ZG, Uysal E. A preliminary study on ultrasound techniques applied to cicatricial alopecia. Skin Res Technol. 2019;25:810–4. https://doi.org/10.1111/srt.12725. Epub 2019 May 29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alfageme Roldán, F. (2023). Skin and Soft Parts Benign Pathology. In: Marsico, S., Solano, A. (eds) Elastography of the Musculoskeletal System . Springer, Cham. https://doi.org/10.1007/978-3-031-31054-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31054-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31053-9

  • Online ISBN: 978-3-031-31054-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics