Skip to main content

Bypass Laminar-Turbulent Transition on a Flat Plate of Organic Fluids Using DNS Method

  • Conference paper
  • First Online:
Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power (NICFD 2022)

Part of the book series: ERCOFTAC Series ((ERCO,volume 29))

  • 284 Accesses

Abstract

This work aims to investigate the impact of non-ideal gas effects on turbulent boundary layers, by applying DNS to the by-pass transition for three gases: air, R1233zd(E), and MDM. Air is the baseline, and three different thermodynamic states are studied for each organic fluid. The work has investigated both the transition process and the fully developed boundary layers. For the transition process, it is found that the transition happens early in organic fluids than air. In contrast to air, more stream-wise vortices are induced by blowing-and-suction boundary conditions, and the propagation speed of Kelvin-Helmholtz instability is also higher in n organic fluids. For the fully developed boundary layer of ideal gas, it is well known that momentum and energy mixing lengths are the same as fluctuations are only driven by turbulent vorticities (SRA). However, for organic fluid cases, the acoustic mode driven by the pressure fluctuation is also found important in generating energy fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27(4), 671–679 (1988)

    Article  Google Scholar 

  2. Chung, T.H., Lee, L.L., Starling, K.E.: Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam. 23(1), 8–13 (1984)

    Article  Google Scholar 

  3. Colonna, P., Nannan, N., Guardone, A.: Multiparameter equations of state for selected siloxanes. Fluid Phase Equilib. 263(2), 115–130 (2008)

    Article  Google Scholar 

  4. Fernholz, H.-H., Finley, P.: A critical compilation of compressible turbulent boundary layer data. Technical report, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France (1977)

    Google Scholar 

  5. Huang, P., Coleman, G., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)

    Article  Google Scholar 

  6. Jacobs, R., Durbin, P.: Simulations of bypass transition. J. Fluid Mech. 428, 185–212 (2001)

    Article  Google Scholar 

  7. Li, X., Ma, Y., Fu, D.: DNS and scaling law analysis of compressible turbulent channel flow. Sci. China, Ser. A Math. 44(5), 645–654 (2001)

    Article  Google Scholar 

  8. Mondejar, M.E., McLinden, M.O., Lemmon, E.W.: Thermodynamic properties of trans-1-chloro-3, 3, 3-trifluoropropene (R1233zd (E)): Vapor pressure,(p, \(\rho \), T) behavior, and speed of sound measurements, and equation of state. J. Chem. Eng. Data 60(8), 2477–2489 (2015)

    Article  Google Scholar 

  9. Morkovin, M.V.: Effects of compressibility on turbulent flows. Mécanique de la Turbulence 367(380), 26 (1962)

    Google Scholar 

  10. Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120 (2011)

    Article  MathSciNet  Google Scholar 

  11. Pirozzoli, S., Grasso, F., Gatski, T.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16(3), 530–545 (2004)

    Article  Google Scholar 

  12. Rai, M., Gatski, T., Erlebacher, G.: Direct simulation of spatially evolving compressible turbulent boundary layers. In: 33rd Aerospace Sciences Meeting and Exhibit, p. 583 (1995)

    Google Scholar 

  13. Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153–199 (2017)

    Article  MathSciNet  Google Scholar 

  14. Sciacovelli, L., Gloerfelt, X., Passiatore, D., Cinnella, P., Grasso, F.: Numerical investigation of high-speed turbulent boundary layers of dense gases. Flow Turbul. Combust. 105(2), 555–579 (2020)

    Article  Google Scholar 

  15. Steger, J.L., Warming, R.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  Google Scholar 

  16. Van Driest, E.R.: Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18(3), 145–160 (1951)

    Article  MathSciNet  Google Scholar 

  17. Walz, A.: Boundary Layers of Flow and Temperature. MIT Press, Cambridge (1969)

    Google Scholar 

  18. Xin-Liang, L., De-Xun, F., Yan-Wen, M., Hui, G.: Acoustic calculation for supersonic turbulent boundary layer flow. Chin. Phys. Lett. 26(9), 094701 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Chen, T., Martinez-Botas, R. (2023). Bypass Laminar-Turbulent Transition on a Flat Plate of Organic Fluids Using DNS Method. In: White, M., El Samad, T., Karathanassis, I., Sayma, A., Pini, M., Guardone, A. (eds) Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. NICFD 2022. ERCOFTAC Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-30936-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30936-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30935-9

  • Online ISBN: 978-3-031-30936-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics