Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 29))

Abstract

Compressible flows at radial equilibrium, i.e. \(\theta \)-independent flows, are investigated in the ideal, dilute-gas regime and in the non-ideal regime close to the liquid-vapour saturation curve and the critical point. A differential relation for the Mach number dependency on the radius is derived for both ideal and non-ideal conditions. For ideal flows, the relation is integrated analytically.

For flows of low molecular complexity fluids, such as diatomic nitrogen or carbon dioxide, the Mach number is a monotonically decreasing function of the radius of curvature, with the polytropic exponent \(\gamma \) being the only fluid-dependent parameter. In non-ideal conditions, the Mach number profile depends also on the total thermodynamic conditions of the fluid. For high molecular complexity fluids, such as toluene and MM (hexamethyldisiloxane), a non-monotone Mach profile is uncovered for non-ideal flows in supersonic conditions. For Bethe-Zel’dovich-Thompson fluids, the non-monotone behaviour is possible also in subsonic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colonna, P., Guardone, A.: Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model. Phys. Fluids 18(5), 056101 (2006)

    Article  Google Scholar 

  2. Colonna, P., Harinck, J., Rebay, S., Guardone, A.: Real-gas effects in organic Rankine cycle turbine nozzles. J. Propul. Power 24(2), 282–294 (2008)

    Article  Google Scholar 

  3. Colonna, P., van der Stelt, T., Guardone, A.: Fluidprop (version 3.0): a program for the estimation of thermophysical properties of fluids. Asimptote, Delft, The Netherlands (2012). http://www.fluidprop.com

  4. Cramer, M., Best, L.: Steady, isentropic flows of dense gases. Phys. Fluids A Fluid Dyn. 3(1), 219–226 (1991)

    Article  Google Scholar 

  5. Cramer, M., Crickenberger, A.: Prandtl-Meyer function for dense gases. AIAA J. 30(2), 561–564 (1992)

    Article  Google Scholar 

  6. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  Google Scholar 

  7. Fergason, S., Guardone, A., Argrow, B.: Construction and validation of a dense gas shock tube. J. Thermophys. Heat Transfer 17(3), 326–333 (2003)

    Article  Google Scholar 

  8. Harinck, J., Guardone, A., Colonna, P.: The influence of molecular complexity on expanding flows of ideal and dense gases. Phys. Fluids 21(8), 086101 (2009)

    Article  Google Scholar 

  9. Klonowicz, P., Lampart, P., et al.: Optimization of an axial turbine for a small scale orc waste heat recovery system. Energy 205, 118059 (2020)

    Article  Google Scholar 

  10. Lemmon, E., Huber, M.L., McLinden, M.O., et al.: NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 9.1 (2007)

    Google Scholar 

  11. Mathijssen, T., et al.: The flexible asymmetric shock tube (fast): a Ludwieg tube facility for wave propagation measurements in high-temperature Vapours of organic fluids. Exp. Fluids 56(10), 1–12 (2015)

    Article  Google Scholar 

  12. Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61(1), 75 (1989)

    Article  MathSciNet  Google Scholar 

  13. Romei, A., Vimercati, D., Persico, G., Guardone, A.: Non-ideal compressible flows in supersonic turbine cascades. J. Fluid Mech. 882, A12 (2020)

    Article  MathSciNet  Google Scholar 

  14. Thompson, P.A.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971)

    Article  Google Scholar 

  15. Thompson, P.A., Lambrakis, K.: Negative shock waves. J. Fluid Mech. 60(1), 187–208 (1973)

    Article  Google Scholar 

  16. Vimercati, D., Gori, G., Guardone, A.: Non-ideal oblique shock waves. J. Fluid Mech. 847, 266–285 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Guardone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajoni, P., Guardone, A. (2023). Non-ideal Compressible Flows in Radial Equilibrium. In: White, M., El Samad, T., Karathanassis, I., Sayma, A., Pini, M., Guardone, A. (eds) Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. NICFD 2022. ERCOFTAC Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-30936-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30936-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30935-9

  • Online ISBN: 978-3-031-30936-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics