Skip to main content

Metabolic, Genetic and Immunological Mechanisms in Susceptibility to Leprosy

  • Chapter
  • First Online:
Hansen’s Disease

Abstract

In the past decade, the availability of data obtained from large-scale studies using molecular and genetic techniques has provided a much-improved picture of the main pathogenic pathways involved in the progression of leprosy. There is a clear clustering of genes encoding for hallmark immune response molecules, reinforcing the overall understanding of the immunopathogenic processes leading to leprosy susceptibility or to polarization between clinical phenotypes. Metabolic changes, cellular trafficking, and autophagy regulate the responses to confer protection and eliminate bacilli from the host. Alternatively, in hosts that are susceptible due to genetic and/or environmental conditions, immune cells fail to activate this protective program through the interference of M. leprae ultimately leading to disease development. Recent insights on the immunopathology of leprosy can pave the way for new diagnostics and personalized therapy based on the immune profile of the specific clinical form of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nery JS, Ramond A, Pescarini JM, Alves A, Strina A, Ichihara MY, et al. Socioeconomic determinants of leprosy new case detection in the 100 million Brazilian cohort: a population-based linkage study. Lancet Glob Health. 2019;7:e1226–36. https://doi.org/10.1016/S2214-109X(19)30260-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moet FJ, Meima A, Oskam L, Richardus JH. Risk factors for the development of clinical leprosy among contacts, and their relevance for targeted interventions. Lepr Rev. 2004;75:310–26. https://doi.org/10.47276/lr.75.4.310.

    Article  CAS  PubMed  Google Scholar 

  3. Hacker MA, Maria Sales A, Cristina Duppre N, Nunes Sarno E, Ozório Moraes M. Leprosy incidence and risk estimates in a 33-year contact cohort of leprosy patients. Sci Rep. 2021;11:1947. https://doi.org/10.1038/s41598-021-81643-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardus R, Alam K, Kundu K, Chandra Roy J, Zafar T, Chowdhury AS, et al. Effectiveness of single-dose rifampicin after BCG vaccination to prevent leprosy in close contacts of patients with newly diagnosed leprosy: a cluster randomized controlled trial. Int J Infect Dis. 2019;88:65–72. https://doi.org/10.1016/j.ijid.2019.08.035.

    Article  PubMed  Google Scholar 

  5. van Hooij A, van den Eeden SJF, Khatun M, Soren S, Franken KLMC, Chandra Roy J, et al. BCG-induced immunity profiles in household contacts of leprosy patients differentiate between protection and disease. Vaccine. 2021;39:7230–7. https://doi.org/10.1016/j.vaccine.2021.10.027.

    Article  CAS  PubMed  Google Scholar 

  6. Lázaro FP, Werneck RI, Mackert CCO, Cobat A, Prevedello FC, Pimentel RP, et al. A major gene controls leprosy susceptibility in a hyperendemic isolated population from north of Brazil. J Infect Dis. 2010;201:1598–605. https://doi.org/10.1086/652007.

    Article  PubMed  Google Scholar 

  7. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3(30):eaau8714.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fava VM, Dallmann-Sauer M, Schurr E. Genetics of leprosy: today and beyond. Hum Genet. 2020;139(6–7):835–46. https://doi.org/10.1007/s00439-019-02087-5.

    Article  PubMed  Google Scholar 

  9. Behr MA, Schurr E. A table for two. Nature. 2013;501:498–9. https://doi.org/10.1038/nature12555.

    Article  CAS  PubMed  Google Scholar 

  10. Teles RMB, Lu J, Tió-Coma M, Goulart IMB, Banu S, Hagge D, et al. Identification of a systemic interferon-γ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction. PLoS Negl Trop Dis. 2019;13:e0007764. https://doi.org/10.1371/journal.pntd.0007764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toledo Pinto TG, Batista-Silva LR, Medeiros RCA, Lara FA, Moraes MO. Type I interferons, autophagy and host metabolism in leprosy. Front Immunol. 2019;9:806. https://doi.org/10.3389/fimmu.2018.00806.

    Article  CAS  Google Scholar 

  12. Santos M, dos Franco ES, da Ferreira PLC, Braga WSM. Borderline tuberculoid leprosy and type 1 leprosy reaction in a hepatitis C patient during treatment with interferon and ribavirin. An Bras Dermatol. 2013;88:109–12. https://doi.org/10.1590/abd1806-4841.20131986.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tió-Coma M, Kiełbasa SM, van den Eeden SJF, Mei H, Roy JC, Wallinga J, et al. Blood RNA signature RISK4LEP predicts leprosy years before clinical onset. EBioMedicine. 2021;68:103379. https://doi.org/10.1016/j.ebiom.2021.103379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, et al. Reduction of host cell mitochondrial activity as Mycobacterium leprae’s strategy to evade host innate immunity. Immunol Rev. 2021;301:193–208. https://doi.org/10.1111/imr.12962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Zhang D-F, Li G-D, Bi R, Fan Y, Wu Y, et al. A pleiotropic effect of the APOE gene: association of APOE polymorphisms with multibacillary leprosy in Han Chinese from Southwest China. Br J Dermatol. 2018;178:931–9. https://doi.org/10.1111/bjd.16020.

    Article  CAS  PubMed  Google Scholar 

  16. Lobato LS, Rosa PS, Da Silva FJ, Da Silva NA, Da Silva MG, Nascimento DC, et al. Statins increase rifampin mycobactericidal effect. Antimicrob Agents Chemother. 2014;58(10):5766–74. https://doi.org/10.1128/C01826.13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell. 2013;152:51–67. https://doi.org/10.1016/j.cell.2012.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leal-Calvo T, Avanzi C, Mendes MA, Benjak A, Busso P, Pinheiro RO, et al. A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathog. 2021;17:e1009972. https://doi.org/10.1371/journal.ppat.1009972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leal-Calvo T, Moraes MO. Reanalysis and integration of public microarray datasets reveals novel host genes modulated in leprosy. Mol Gen Genom. 2020;295:1355–68. https://doi.org/10.1007/s00438-020-01705-6.

    Article  CAS  Google Scholar 

  20. Hooij A, Geluk A. In search of biomarkers for leprosy by unraveling the host immune response to Mycobacterium leprae. Immunol Rev. 2021;301:175–92. https://doi.org/10.1111/imr.12966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Geluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moraes, M.O., Pinheiro, R.O., Geluk, A. (2023). Metabolic, Genetic and Immunological Mechanisms in Susceptibility to Leprosy. In: Deps, P.D. (eds) Hansen’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-30893-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30893-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30892-5

  • Online ISBN: 978-3-031-30893-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics