Skip to main content

Predictive Energy Management for Battery Electric Vehicles with Hybrid Models

  • Conference paper
  • First Online:
Intelligent Transport Systems (INTSYS 2022)

Abstract

This paper addresses the problem of predicting the energy consumption for the drivers of Battery electric vehicles (BEVs). Several external factors (e.g., weather) are shown to have huge impacts on the energy consumption of a vehicle besides the vehicle or powertrain dynamics. Thus, it is challenging to take all of those influencing variables into consideration. The proposed approach is based on a hybrid model which improves the prediction accuracy of energy consumption of BEVs. The novelty of this approach is to combine a physics-based simulation model, which captures the basic vehicle and powertrain dynamics, with a data-driven model. The latter accounts for other external influencing factors neglected by the physical simulation model, using machine learning techniques, such as generalized additive mixed models, random forests and boosting. The hybrid modeling method is evaluated with a real data set from TUM and the hybrid models were shown that decrease the average prediction error from 40% of the pure physics model to 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamec, Z., Adolt, R., Drápela, K., Závodský, J.: Evaluation of different calibration approaches for merchantable volume predictions of Norway spruce using nonlinear mixed effects model. Forests 10(12), 1104 (2019)

    Article  Google Scholar 

  2. Crowder, M.: On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 82(2), 407–410 (1995)

    Article  MATH  Google Scholar 

  3. De Cauwer, C., Verbeke, W., Coosemans, T., Faid, S., Van Mierlo, J.: A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies 10(5), 608 (2017)

    Article  Google Scholar 

  4. Everitt, B., Rabe-Hesketh, S.: Generalized additive models. In: Analyzing Medical Data Using S-PLUS. Statistics for Biology and Health, pp. 291–303. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3285-6_14

  5. Ferreira, J.C., Monteiro, V.D.F., Afonso, J.L.: Data mining approach for range prediction of electric vehicle (2012)

    Google Scholar 

  6. Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied Longitudinal Analysis, vol. 998. Wiley, New Jersey (2012)

    MATH  Google Scholar 

  7. Genikomsakis, K.N., Mitrentsis, G.: A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transp. Res. D: Transp. Environ. 50, 98–118 (2017)

    Article  Google Scholar 

  8. Guzzella, L., Sciarretta, A., et al.: Vehicle propulsion systems, vol. 1. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-642-35913-2

  9. Halmeaho, T., et al.: Experimental validation of electric bus powertrain model under city driving cycles. IET Electr. Syst. Transp. 7(1), 74–83 (2017)

    Article  Google Scholar 

  10. Holden, J., Wood, E.W., Zhu, L., Gonder, J.D., Tian, Y.: Development of a trip energy estimation model using real-world global positioning system driving data. Tech. rep., National Renewable Energy Lab. (NREL), Golden, CO (United States) (2017)

    Google Scholar 

  11. Karpievitch, Y.V., Hill, E.G., Leclerc, A.P., Dabney, A.R., Almeida, J.S.: An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++. PLoS ONE 4(9), e7087 (2009)

    Article  Google Scholar 

  12. Kongklaew, C., et al.: Barriers to electric vehicle adoption in Thailand. Sustainability 13(22), 12839 (2021)

    Article  Google Scholar 

  13. Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, X., Zhang, D.: Inference in generalized additive mixed models by using smoothing splines. J. R. Stat. Soc., B: Stat. Methodol. 61(2), 381–400 (1999)

    Google Scholar 

  15. The Mathworks, Inc., Natick, Massachusetts: MATLAB version 9.3.0.713579 (R2017b) (2017)

    Google Scholar 

  16. Oh, G., Leblanc, D.J., Peng, H.: Vehicle energy dataset (VED), a large-scale dataset for vehicle energy consumption research. IEEE Trans. Intell. Transp. Syst. 23(4), 3302–3312 (2022). https://doi.org/10.1109/TITS.2020.3035596

    Article  Google Scholar 

  17. Overall, J.E., Tonidandel, S.: Robustness of generalized estimating equation (GEE) tests of significance against misspecification of the error structure model. Biometrical J. 46(2), 203–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petkevicius, L., Saltenis, S., Civilis, A., Torp, K.: Probabilistic deep learning for electric-vehicle energy-use prediction. In: 17th International Symposium on Spatial and Temporal Databases, pp. 85–95 (2021)

    Google Scholar 

  19. Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W., Podobnik, V.: Electric vehicle range anxiety: an obstacle for the personal transportation (r)evolution? In: 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), pp. 1–8. IEEE (2019)

    Google Scholar 

  20. Schielzeth, H., et al.: Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11(9), 1141–1152 (2020)

    Article  Google Scholar 

  21. Shmueli, G.: To explain or to predict? Stat. Sci. 25(3), 289–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steinstraeter, M., Buberger, J., Trifonov, D.: Battery and heating data in real driving cycles (2020). https://doi.org/10.21227/6jr9-5235

  23. Steinstraeter, M., Heinrich, T., Lienkamp, M.: Effect of low temperature on electric vehicle range. World Electr. Veh. J. 12(3), 115 (2021)

    Article  Google Scholar 

  24. Wedderburn, R.W.: Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika 61(3), 439–447 (1974)

    MathSciNet  MATH  Google Scholar 

  25. Wu, G., Ye, F., Hao, P., Esaid, D., Boriboonsomsin, K., Barth, M.J.: Deep learning-based eco-driving system for battery electric vehicles (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the TRANSACT project. TRANSACT (https://transact-ecsel.eu/) has received funding from the Electronic Component Systems for European Leadership Joint Under-taking under grant agreement no. 101007260. This joint undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Belgium, Denmark, Finland, Germany, Poland, Netherlands, Norway, and Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lindskog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, YW., Prehofer, C., Lindskog, W., Puts, R., Mosca, P., Kauermann, G. (2023). Predictive Energy Management for Battery Electric Vehicles with Hybrid Models. In: Martins, A.L., Ferreira, J.C., Kocian, A., Tokkozhina, U. (eds) Intelligent Transport Systems. INTSYS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-30855-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30855-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30854-3

  • Online ISBN: 978-3-031-30855-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics