Skip to main content

Softwarization in Satellite and Interplanetary Networks

  • Chapter
  • First Online:
A Roadmap to Future Space Connectivity

Abstract

The past decade has shown a great advancement towards full network softwarization. In particular, the arrival of software-defined networking (SDN) and network function virtualization (NFV) is transforming network management and design approaches. SDN decouples the network control function from a forwarding function to centralize it with a global view of the network. This approach also is used to program the network from the central controller using the global view of the network instead of configuring individual routers as in the classic method. NFV is the softwarization of network functions such as firewalls, NAT, deep packet inspection, etc. The softwarization of networks along with the flexibility of the programmable networks would pave the way for intelligent networks that could suit remote and space communication. In particular, network softwarization is enabling a 3D network with a potential application for lunar and Martian deployment interconnecting them with the territorial global connectivity. This chapter discusses network softwarization and intelligence in the context of space exploration while also identifying possible research challenges and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solar System Exploration, Available Online At: https://solarsystem.nasa.gov/missions/?order=launch_date+desc&per_page=50&page=0&search=&fs=&fc=&ft=&dp=&category=, Accessed 26 Feb 2021

    Google Scholar 

  2. Chang’e-5: China’s Moon Sample Return Mission, Available Online At: https://www.jpl.nasa.gov/edu/news/2017/8/29/the-farthest-operating-spacecraft-voyagers-1-and-2-still-exploring-40-years-later/, Accessed 20 Feb 2021

  3. Artemis:Human’s Return to the Moon, Available Online At: https://www.nasa.gov/specials/artemis/, Accessed 20 Feb 2021

  4. Chang’e-5: China’s Moon Sample Return Mission, Available Online At: https://www.planetary.org/space-missions/change-5, Accessed 20 Feb 2021

  5. China’s 1st Mars rover ’Zhurong’ lands on the Red Planet, Available Online At: https://www.space.com/china-Mars-rover-landing-success-tianwen-1-zhurong, Accessed 28 Feb 2021

  6. ExoMars to Take off for the Red Planet in 2022, Available Online At: https://www.esa.int/Newsroom/Press_Releases/ExoMars_to_take_off_for_the_Red_Planet_in_2022, Accessed 26 Feb 2021

  7. Touchdown NASAs Mars Perseverance Rover Safely Lands on Red Planet, Available Online At: https://mars.nasa.gov/news/8865/touchdown-nasas-Mars-perseverance-rover-safely-lands-on-red-planet/, Accessed 28 Feb 2021

  8. Nokia Selected by NASA to Build First Ever Cellular Network on the Moon, Available Online At: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/, Accessed 20 Feb 2021

  9. P. Skarin, W. Tärneberg, K. Årzen, M. Kihl, Towards mission-critical control at the edge and over 5G, in 2018 IEEE International Conference on Edge Computing (EDGE) (2018), pp. 50–57. https://doi.org/10.1109/EDGE.2018.00014

  10. S.T. Arzo, R. Bassoli, F. Granelli, F.H.P. Fitzek, Multi-agent based autonomic network management architecture. IEEE Trans. Netw. Serv. Manag. 18(3), 3595–3618 (2021). https://doi.org/10.1109/TNSM.2021.3059752

    Article  Google Scholar 

  11. S.T. Arzo, D. Scotece, R. Bassoli, F. Granelli, L. Foschini, F.H.P. Fitzek, A new agent-based intelligent network architecture. IEEE Commun. Stand. Mag. 6(4), 74–79 (2022). https://doi.org/10.1109/MCOMSTD.0001.2100053

    Article  Google Scholar 

  12. C. Bergstrom, S. Chuprun, S. Gifford, G. Maalouli, Software defined radio (SDR) special military applications, in MILCOM 2002. Proceedings, vol. 1 (2002) pp. 383–388. https://doi.org/10.1109/MILCOM.2002.1180472

  13. S. Bonafini, C. Bianchi, F. Granelli, C. Sacchi, A reconfigurable multi-modal SDR transceiver for cubeSats, in 2021 IEEE Aerospace Conference (50100) (2021), pp. 1–12. https://doi.org/10.1109/AERO50100.2021.9438235

  14. What is the Deep Space Network? Online Available At: https://www.nasa.gov/directorates/heo/scan/services/networks/deep_space_network/about. Accessed: 26 Feb 2021

  15. , Deep Space Network, Online Available At https://eyes.nasa.gov/dsn/dsn.html. Accessed: 26 Feb 2021

  16. H. Yao, L. Wang, X. Wang, Z. Lu, Y. Liu, The space-terrestrial integrated network: an overview. IEEE Commun. Mag. 56(9), 178–185. https://doi.org/10.1109/MCOM.2018.1700038

  17. B. Stefano, S. Claudio, B. Riccardo, K. Koteswararao, G. Fabrizio, H.P.F. Frank, End-to-end performance assessment of a 3D network for 6G connectivity on Mars surface. Comput. Netw. 213 (2022). ISSN: 1389-1286. https://doi.org/10.1016/j.comnet.2022.109079https://www.sciencedirect.com/science/article/pii/S1389128622002171)

  18. D. Sikeridis, E.E. Tsiropoulou, M. Devetsikiotis, S. Papavassiliou, Context-aware wireless-protocol selection in heterogeneous public safety networks. IEEE Trans. Veh. Technol. 68(2), 2009–2013 (2018)

    Article  Google Scholar 

  19. C. Sacchi, S. Bonafini, From LTE-A to LTE-M: a futuristic convergence between terrestrial and martian mobile communications, in 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) (2019), pp. 1–5. https://doi.org/10.1109/BlackSeaCom.2019.8812825

  20. A. Daga, G.R. Lovelace, D.K. Borah, P.L. De Leon, Terrain-based simulation of IEEE 802.11a and b physical layers on the martian surface. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1617–1624 (2007). https://doi.org/10.1109/TAES.2007.4441762

  21. D. Sikeridis, E. EleniTsiropoulou, M. Devetsikiotis, S. Papavassiliou, Self-adaptive energy efficient operation in UAV-assisted public safety networks, in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), (2018), pp. 1–5. https://doi.org/10.1109/SPAWC.2018.8446007

  22. V. Chukkala, P. De Leon, S. Horan, V. Velusamy, Modeling the radio frequency environment of Mars for future wireless, networked rovers and sensor Webs, in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), vol. 2 (2004), pp. 1329–1336. https://doi.org/10.1109/AERO.2004.1367731

  23. A. Babuscia, D. Divsalar, K. Cheung, CDMA communication system for Mars Areostationary relay satellite, in 2017 IEEE Aerospace Conference (2017), pp. 1–10 https://doi.org/10.1109/AERO.2017.7943941

  24. P. Farkaš, Adaptive feedback supported communication for IoT and space applications, in 2019 NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2019), pp 61–64. https://doi.org/10.1109/AHS.2019.00005

  25. Wi-Fi Enables Next Generation Space Exploration, Available Online At: https://www.wi-fi.org/download.php?file=/sites/default/files/private/Wi-Fi_in_Space.pdf, Accessed 25 Feb 2021

  26. K. Routh, T. Pal, A survey on technological, business and societal aspects of Internet of Things by Q3, 2017, in 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU) (2018), pp. 1–4. https://doi.org/10.1109/IoT-SIU.2018.8519898

  27. P. Yadav, S. Vishwakarma, Application of internet of things and big data towards a smart city, in 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU) (2018), pp. 1–5. https://doi.org/10.1109/IoT-SIU.2018.8519920

  28. A. Zeinab, E. Mona, S. Dimitrios, D. Michael, Internet of things-enabled passive contact tracing in smart cities. Int. Things 100397 (2021)

    Google Scholar 

  29. D. Sikeridis, B.P. Rimal, I. Papapanagiotou, M. Devetsikiotis, Unsupervised crowd-assisted learning enabling location-aware facilities. IEEE Int. Things J. 5(6), 4699–4713 (2018)

    Article  Google Scholar 

  30. D. Sikeridis, E.E. Tsiropoulou, M. Devetsikiotis, S. Papavassiliou, Energy-efficient orchestration in wireless powered internet of things infrastructures. IEEE Trans. Green Commun. Netw. 3(2), 317–328 (2018)

    Article  Google Scholar 

  31. J. Sprague, NASA’s Internet of Things Lab. Online Available At: https://internet-of-things.cioreview.com/cxoinsight/nasa-s-internet-of-things-lab--nid-13174-cid-133.html

  32. Stanford and NASA Launch Tiny IoT Satellites Into Earth’s Orbit, Online Available At: https://theiotmagazine.com/stanford-and-nasa-launch-tiny-iot-satellites-into-earths-orbit-9e5f92487500, Accessed 20 Feb 2021

  33. TechEdSat-5 (Technical Education Satellite-5), Online Available At: “https://directory.eoportal.org/web/eoportal/satellite-missions/t/techedsat-5. Accessed 25 Feb 2021

  34. Is the IoT in Space About to Take Off? Online Available At: https://www.networkworld.com/article/3315736/is-the-iot-in-space-about-to-take-off.html. Accessed 20 Feb 2021

  35. S.T. Arzo, F. Zambotto, F. Granelli, R. Bassoli, M. Devetsikiotis, F.H.P. Fitzek, A translator as virtual network function for network level interoperability of different IoT Technologies, in The 2021 IEEE 7th International Conference on Network Softwarization (NetSoft) (2021), pp. 416–422. https://doi.org/10.1109/NetSoft51509.2021.9492677

  36. H. Jungha et al., IoT Edge Challenges and Functions (2022). Last Updated 11 Jan, 2022, Accessed: 09 May 2022, Online Available At: https://datatracker.ietf.org/doc/draft-irtf-t2trg-iot-edge/

  37. D. Sikeridis, I. Papapanagiotou, B.P. Rimal, M. Devetsikiotis, A comparative taxonomy and survey of public cloud infrastructure vendors (2017). https://doi.org/10.48550/ARXIV.1710.01476, Online Available At: https://arxiv.org/abs/1710.01476

  38. M.G. Samaila, J.B.F. Sequeiros, T. Simões, M.M. Freire, P.R.M. Inácio, IoT-HarPSecA: a framework and roadmap for secure design and development of devices and applications in the IoT space. IEEE Access 8, 16462–16494. https://doi.org/10.1109/ACCESS.2020.2965925

  39. P.V.R. Ferreira, R. Paffenroth, A.M. Wyglinski, T.M. Hackett, S.G. Bilén, R.C. Reinhart, D.J. Mortensen, Multi-objective reinforcement learning-based deep neural networks for cognitive space communications, in 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA) (2017), pp. 1–8. https://doi.org/10.1109/CCAAW.2017.8001880

  40. A.E. Hassanien, A. Darwish, S. Abdelghafar, Machine learning in telemetry data mining of space mission: basics, challenging and future direction. Artif. Intell. Rev. 53, 1573–7462 (2020) https://doi.org/10.1007/s10462-019-09760-1

    Article  Google Scholar 

  41. D. Lary, Artif. Intell. Aerosp. (2010). ISBN:978-953-7619-96-1, https://doi.org/10.5772/6941, https://www.intechopen.com/chapters/6832

  42. P. Carolina, P. Angelika, B. Martin, A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010). Special Issue on Design and Control Methodologies in Telerobotics. ISSN: 0957-4158. https://doi.org/10.1016/j.mechatronics.2010.04.005, url: https://www.sciencedirect.com/science/article/pii/S0957415810000735

  43. D. Lee, M.W. Spong, Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006). https://doi.org/10.1109/TRO.2005.862037

    Article  Google Scholar 

  44. S. Lichiardopol, A Survey on Teleoperation (Technische UniversiteitEindhoven, 2007). eprint: 2007.155 https://pure.tue.nl/ws/files/4419568/656592.pdf

  45. G. Niemeyer, J.-J.E. Slotine,Towards force-reflecting teleoperation over the internet, in Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), vol. 3 (1998), pp. 1909–1915. https://doi.org/10.1109/ROBOT.1998.680592

  46. N. Chopra, M.W. Spong, S. Hirche, M. Buss, Bilateral teleoperation over the internet: the time varying delay problem, in Proceedings of the 2003 American Control Conference, vol. 1 (2003), pp. 155–160. https://doi.org/10.1109/ACC.2003.1238930

  47. C.L. Fok, F. Sun, M. Mangum, A. Mok, B. He, L. Sentis, Web Based Teleoperation of a Humanoid Robot (2016). https://doi.org/10.48550/ARXIV.1607.05402https://arxiv.org/abs/1607.05402, arXiv.org perpetual, non-exclusive license

  48. R. Ibrahimov, E. Tsykunov, V. Shirokun, A. Somov, D. Tsetserukou, DronePick: object picking and delivery teleoperation with the drone controlled by a wearable tactile display, in 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (2019), pp.1–6. https://doi.org/10.1109/RO-MAN46459.2019.8956344

  49. L. Almeida, P. Menezes, J. Dias, Interface transparency issues in teleoperation. Appl. Sci. 10(18) (2020). https://www.mdpi.com/2076-3417/10/18/6232, ISSN: 2076-3417, https://doi.org/10.3390/app10186232

  50. T.B. Sheridan, Teleoperation, telerobotics and telepresence: a progress report. Control Eng. Pract. 3(2), 205–214 (1995). ISSN: 0967-0661, https://doi.org/10.1016/0967-0661(94)00078-U, http://www.sciencedirect.com/science/article/pii/096706619400078U

  51. Station Astronauts Remotely Control Planetary Rover From Space, Available Online At: https://www.nasa.gov/mission_pages/station/research/news/rover_from_space, Accessed 20 Feb 2021

  52. G. Hirzinge, B. Brunner, J. Dietrich, J. Heindl, ROTEX-the first remotely controlled robot in space, in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 3 (1994), pp. 2604–2611. https://doi.org/10.1109/ROBOT.1994.351121

  53. T. Sheridan, Human supervisory control of robot systems, Proceedings 1986 IEEE International Conference on Robotics and Automation, vol. 3 (1986), pp. 808–812. https://doi.org/10.1109/ROBOT.1986.1087506

    Article  Google Scholar 

  54. F. Terrence, R.Z. Jenniferand, C. Nancy, M. Andrew, L.A. David, Space telerobotics: unique challenges to human–robot collaboration in space. Rev. Human Factors Ergon. 9(1), 6–56 (2013). https://doi.org/10.1177/1557234X13510679, https://doi.org/10.1177/1557234X13510679, https://doi.org/10.1177/1557234X13510679

  55. Y. Gao, S. Chien, Review on space robotics: toward top-level science through space exploration. Sci. Robot. 2(7), eaan5074 (2017) . https://doi.org/10.1126/scirobotics.aan5074. https://robotics.sciencemag.org/content/2/7/eaan5074, https://robotics.sciencemag.org/content/2/7/eaan5074.full.pdf

  56. L. Pedersen, D. Kortenkamp, D. Wettergreen, I. Nourbakhsh, D. Korsmeyer, A Survey of Space Robotics (2003). https://www.researchgate.net/publication/2874965

  57. M. Montemerlo, NASA’s automation and robotics technology development program, in Proceedings. 1986 IEEE International Conference on Robotics and Automation, (1986), pp. 977–986. https://doi.org/10.1109/ROBOT.1986.1087562

  58. R.T. Azuma, A survey of augmented reality, vol. 6, no. 4 (MIT Press, Cambridge, 1997), pp. 355–385. ISSN: 1054–7460, https://doi.org/10.1162/pres.1997.6.4.355, Presence: Teleoper Virtual Environ

  59. P. Milgram, A. Rastogi, J.J. Grodski, Telerobotic control using augmented reality, in Proceedings 4th IEEE International Workshop on Robot and Human Communication, pp. 21–29 (1995). https://doi.org/10.1109/ROMAN.1995.531930

  60. C. Preusche, G. Hirzinger, Haptics in telerobotics. Visual Comput. 23 (2007). https://doi.org/10.1007/s00371-007-0101-3

  61. P. Milgram, S. Zhai, D. Drascic, J. Grodski, Applications of augmented reality for human-robot communication, in Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’93), vol. 3 (1993), pp. 1467–1472. https://doi.org/10.1109/IROS.1993.583833

  62. , S. Islam, M. Al-Mohammed, R. Islam, M. Bhattacharya, T.M. Alkharobi, S.M. Buhari, Design of an augmented telerobotic stereo vision system and associated security concerns, in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (2015), pp.1809–1814. https://doi.org/10.1109/ICIEA.2015.7334405

  63. H. Hedayati, M. Walker, D. Szafir, Improving collocated robot teleoperation with augmented reality, in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. HRI ’18 (Association for Computing Machinery, New York, 2018), pp. 78–86. ISBN:9781450349536, https://doi.org/10.1145/3171221.3171251

  64. C. Xue Er Shamaine, Y. Qiao, J. Henry, K. McNevin, N. Murray, RoSTAR: ROS-based telerobotic control via augmented reality, in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP) (2020), pp. 1–6. https://doi.org/10.1109/MMSP48831.2020.9287100

  65. D. Sikeridis, E.E. Tsiropoulou, M. Devetsikiotis, S. Papavassiliou, Wireless powered public safety IoT: a UAV-assisted adaptive-learning approach towards energy efficiency. J. Netw. Comput. Appl. 123, 69–79 (2018)

    Article  Google Scholar 

  66. B. Denby, B. Lucia, Orbital edge computing: machine inference in space. IEEE Comput. Archit. Lett. 18(1), 59–62 (2019). https://doi.org/10.1109/LCA.2019.2907539

    Article  Google Scholar 

  67. Y. Koyasako, T. Suzuki, S. Kim, J. Kani, J. Terada, Real-time motion control method using measured delay information on access edge computing, in 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC) (2020), pp. 1–4. https://doi.org/10.1109/CCNC46108.2020.9045470

  68. Z. Wang, Y. Gao, C. Fang, Y. Sun, P. Si, Optimal control design for connected cruise control with edge computing, caching, and control, in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2019), pp. 1–6. https://doi.org/10.1109/INFOCOMWKSHPS47286.2019.9093766

  69. D. Sikeridis, I. Papapanagiotou, B.P. Rimal, M. Devetsikiotis, A comparative taxonomy and survey of public cloud infrastructure vendors (2017). Preprint. arXiv:1710.01476

    Google Scholar 

  70. J. Wei, S. Cao, Application of edge intelligent computing in satellite internet of things, in 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) (2019), pp. 85–91. https://doi.org/10.1109/SmartIoT.2019.00022

  71. G. Cui, X. Li, L. Xu, W. Wang, Latency and energy optimization for MEC enhanced SAT-IoT networks. IEEE Access 8, 55915–55926 (2020). https://doi.org/10.1109/ACCESS.2020.2982356

    Article  Google Scholar 

  72. W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge computing for the internet of things. IEEE Access 6, 6900–6919 (2018). https://doi.org/10.1109/ACCESS.2017.2778504

    Article  Google Scholar 

  73. Y. Ma, C. Lu, B. Sinopoli, S. Zeng, Exploring edge computing for multitier industrial control. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 3506–3518 (2020). https://doi.org/10.1109/TCAD.2020.3012648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisay Tadesse Arzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arzo, S.T., Bassoli, R., Devetsikiotis, M., Granelli, F., Fitzek, F.H.P. (2023). Softwarization in Satellite and Interplanetary Networks. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30762-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30761-4

  • Online ISBN: 978-3-031-30762-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics