Skip to main content

Technologies and Infrastructures for a Sustainable Space

  • Chapter
  • First Online:
A Roadmap to Future Space Connectivity

Abstract

The space is going to become an unsafe place to operate. The amount of active and passive space objects (satellites and debris) that are concentrated in some orbits represents a treat. In such a crowded environment, spectrum management becomes more complex and the probability to operate with high level of interference increases. It is becoming more and more clear that actions are needed to make the space more sustainable. Much of the effort is nowadays in reducing the risk associated to the already produced “space junks”. This chapter outlines the need to design future missions through a common sustainability-prone strategy that aim to stop producing further pollution. The chapter describes the proposed strategy and key technologies to enable it

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ruggieri, T. Rossi, New fascinating challenges for space systems: Softwarization, ai-based robotization and sustainability. Which role for cubesats? in Advances in the Astronautical Sciences (Univelt, Escondido, 2020), pp. 609–615

    Google Scholar 

  2. A. Murtaza, S.J.H. Pirzada, T. Xu, L. Jianwei, Orbital debris threat for space sustainability and way forward (review article). IEEE Access 8, 61000–61019 (2020). https://doi.org/10.1109/ACCESS.2020.2979505

    Article  Google Scholar 

  3. E. Cianca, M Ruggieri, Space sustainability: towards the future of connectivity, in Chapter 14, Women in Telecommunications Springer Cham, (2023). ISSN 2509-6435

    Google Scholar 

  4. ESA, Applications/telecommunications & integrated applications. Sustainable Connectivity in Space (2022). https://www.esa.int

  5. BSR, Sustainability in space: the next frontier (2022). https://www.bsr.org/en/emerging-issues/

  6. E. Howell, SpaceX promises sustainability and safety for Starlink constellation. Space (Future US, New York, 2022). https://www.space.com/spacex-sustainability-safety-starlink-satellite-megaconstellation

  7. R. Shields, Space sustainability as a national priority in the United States. J. Space Saf. Eng. 1–5 (2022). https://doi.org/10.1016/j.jsse.2022.08.002

  8. OneWeb, Responsible Space (2022). https://oneweb.net/about-us/responsible-space

  9. Secure World Foundation, Space sustainability: a practical guide (2018). www.swfound.org

  10. A. Fanfani, Communication techniques, architecture and services for satellite application in critical scenarios. Ph.D. Thesis Dissertation, 2017

    Google Scholar 

  11. S. Frey, S. Lemmens, B. Bastida Virgili, T. Flohrer, Level of aherence to sdm guidelines. Technical Report Issue 1.0, ESA/ESOC Space Debris Office, 2016

    Google Scholar 

  12. IADC. space debris mitigation guidelineas, UNCOPUOS 40-th session, Vienna 17-28 February 2003, Space Debris, A/AC.105/C.1/L-260

    Google Scholar 

  13. F. Alby, D. Alwes, L. Anselmo, European code of conduct for space debris mitigation. Technical Report Issue 1.0, 2004

    Google Scholar 

  14. M. Hosseinian, J.P. Choi, S.H. Chang, J. Lee, Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network. IEEE Aerosp. Electron. Syst. Mag. 36(8), 22–31 (2021). https://doi.org/10.1109/MAES.2021.3072690

    Article  Google Scholar 

  15. M. Rathnasabapathy et al., Implementing the space sustainability rating: an innovative tool to foster long-term sustainability in orbit, in 72nd International Astronautical Congress, Dubai, United Arab Emirates, 25–29 October (2021)

    Google Scholar 

  16. A. Golkar, Federated satellite systems: a case study on sustain ability enhancement of space exploration systems architectures, in Proceedings of the International Astronautical Congress, IAC, vol. 11 (2013), pp. 9063–9076

    Google Scholar 

  17. J.A. Ruiz-de Azua, L. Fernandez, J.F. Munoz, M. Badia, R. Castella, C. Diez, A. Aguilella, S. Briatore, N. Garzaniti, A. Calveras, A. Golkar, A. Camps, Proof-of-concept of a federated satellite system between two 6-unit cubesats for distributed earth observation satellite systems, in Proceedings of IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium (2019), pp. 8871–8874

    Google Scholar 

  18. J.A. Ruiz-de Azua, N. Garzaniti, A. Golkar, A. Calveras, A. Camps, Towards federated satellite systems and internet of satellites: the federation deployment control protocol. Remote Sens. 13(5) (2021)

    Google Scholar 

  19. R. Giuliano, The next generation network in 2030: applications, services, and enabling technologies, in Proceedings of the 8th International Conference on Electrical Engineering. Computer Science and Informatics (EECSI) (2021), pp. 294–298

    Google Scholar 

  20. M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, R. Prasad, Satellite communications supporting internet of remote things. IEEE Int. Things J. 3(1), 113–123 (2016). https://doi.org/10.1109/JIOT.2015.2487046

    Article  Google Scholar 

  21. C.A. Hofmann, A. Knopp, Tracking of remote IoT devices by satellite assisted geolocation, in Proceedings of IEEE International Conference on Communications (ICC) (2020), pp. 1–6

    Google Scholar 

  22. I.S. Mohamad Hashim, A. Al-Hourani, B. Ristic, Satellite localization of IoT devices using signal strength and doppler measurements. IEEE Wirel. Commun. Lett. 11(9), 1910–1914 (2022)

    Article  Google Scholar 

  23. 3GPP TR 38.821, Solutions for NR to support non-terrestrial networks (NTN). Technical Specification Group Radio Access Network, 16.0.0. 3rd Generation Partnership Project (3GPP). Technical Report (2019–12)

    Google Scholar 

  24. S. Li, W. Yuan, C. Liu, Z. Wei, J. Yuan, B. Bai, D.W.K. Ng, A novel ISAC transmission framework based on spatially-spread orthogonal time frequency space modulation. IEEE J. Sel. Areas Commun. 40(6), 1854–1872 (2022)

    Article  Google Scholar 

  25. T. Rossi, C. Fragale, M. De Sanctis, E. Cianca, M. Ruggieri, H. Fenech, Software defined networking and high throughput satellite: the best matching for space-based communications infrastructures, in Proceedings of the 21st Ka and Broadband Communications Conference, Bologna (Italy) (2015). On line proceedings ISSN -2573-6124

    Google Scholar 

  26. Y. Bi, G. Han. S. Xu, X. Wang, C. Lin, Z. Yu, P. Sun, Software defined space-terrestrial integrated networks: architecture, challenges, and solutions. IEEE Netw. 22–28 (2019). https://doi.org/10.1109/MNET.2018.1800193

  27. T. Li, H. Zhou, H. Luo, S. Yu, SERvICE: a software defined framework for integrated space-terrestrial satellite communication. IEEE Trans. Mobile Comput. 17(3), 703–716 (2018)

    Article  Google Scholar 

  28. T Huang, W. Yang, J. Wu, J. Ma, X. Zhang, D. Zhang, A survey on green 6G network: architecture and technologies. IEEE Access 175758–175768 (2019). https://doi.org/10.1109/ACCESS.2019.2957648

  29. A. Montazerolghaem, M.H. Yaghmaee, A. Leon-Garcia, Green cloud multimedia networking: NFV/SDN based energy-efficient resource allocation. IEEE Trans. Green Commun. Netw. 4(3), 873–888 (2020). https://doi.org/10.1109/TGCN.2020.2982821

    Article  Google Scholar 

  30. A.A.Z. Ibrahim, F. Hashim, A. Sali, N.K. Noordin, S.M.E. Fadul, A multi-objective routing mechanism for energy management optimization in SDN multi-control architecture. IEEE Access 20312–20327 (2022). https://doi.org/10.1109/ACCESS.2022.3149795

  31. J. Zhang, X. Zhang, M.A. Imran et al., Energy efficient hybrid satellite terrestrial 5G networks with software defined features. KICS J. Commun. Netw. 19(2), 147–162 (2017). https://doi.org/10.1109/JCN.2017.000024

    Article  Google Scholar 

  32. Z. Tu, H. Zhou, K. Li, M. Li, A. Tian, An energy-efficient topology design and DDoS attacks mitigation for green software-defined satellite network. IEEE Access 211434–211450 (2020). https://doi.org/10.1109/ACCESS.2020.3039975

  33. A. Moubayed, T. Ahmed, A. Haque, A. Shami, Machine learning towards enabling spectrum-as-a-service dynamic sharing, in Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2020), pp. 1–6. https://doi.org/10.1109/CCECE47787.2020.9255817

  34. European Space Agency, AIKO: Autonomous operations thanks to artificial intelligence. Online available. (2018)

    Google Scholar 

  35. V. Kothari, E. Liberis, n.d. Lane, The final frontier: deep learning in space, in in Proceedings of the 21st International Workshop on Mobile Computing Systems and Applications (HotMobile ’20). Association for Computing Machinery, New York, NY, USA (2020), pp. 45–49. https://doi.org/10.1145/3376897.3377864

  36. E. Lagona, S. Hilton, A. Afful, A. Gardi, R. Sabatini, Autonomous trajectory optimisation for intelligent satellite systems and space traffic management. Acta Astronautica 194, 185–201 (2022). ISSN 0094-5765. https://doi.org/10.1016/j.actaastro.2022.01.027

    Article  Google Scholar 

  37. J.A. Ruiz-De-Azua, V. Ramírez, H. Park, A.C. Augè, A. Camps, Assessment of satellite contacts using predictive algorithms for autonomous satellite networks. IEEE Access 8, 100732–100748 (2020). https://doi.org/10.1109/ACCESS.2020.2998049

    Article  Google Scholar 

  38. Y. Li, Y. Chen, Propagation modeling and analysis for terahertz inter-satellite communications using FDTD methods, in Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops) (2021), pp. 1–6. https://doi.org/10.1109/ICCWorkshops50388.2021.9473712

  39. M. De Sanctis, E. Cianca, T. Rossi, C. Sacchi, L. Mucchi, R. Prasad, Waveform design solutions for EHF broadband satellite communications. IEEE Commun. Mag. 53(3), 18–23 (2015). https://doi.org/10.1109/MCOM.2015.7060477

    Article  Google Scholar 

  40. W. Jiang, H.D. Schotten, Initial access for millimeter-wave and terahertz communications with hybrid beamforming, in Proceedings ICC 2022 - IEEE International Conference on Communications (2022), pp. 3960–3965. https://doi.org/10.1109/ICC45855.2022.9838386

  41. Z. Xiao et al., A survey on millimeter-wave beamforming enabled UAV communications and networking. IEEE Commun. Surv. Tutorials 24(1), 557–610 (2022). https://doi.org/10.1109/COMST.2021.3124512

    Article  MathSciNet  Google Scholar 

  42. K. Tekbıyık et al., Reconfigurable intelligent surface empowered terahertz communication for LEO satellite networks (2020). ArXiv abs/2007.04281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Cianca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cianca, E., Morosi, S., Ruggieri, M. (2023). Technologies and Infrastructures for a Sustainable Space. In: Sacchi, C., Granelli, F., Bassoli, R., Fitzek, F.H.P., Ruggieri, M. (eds) A Roadmap to Future Space Connectivity. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-30762-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30762-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30761-4

  • Online ISBN: 978-3-031-30762-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics