Skip to main content

Chemical Adulterants in Food: Recent Challenges

  • Chapter
  • First Online:
Engineering Aspects of Food Quality and Safety

Part of the book series: Food Engineering Series ((FSES))

  • 299 Accesses

Abstract

Food fraud, the motivated practice of altering food components to deceive consumers for economic gain, has been a huge global concern over the years. The common form of food fraud is food adulteration. It is a great threat to human health and well-being. Detection of fraudulent malpractices is important to safeguard consumer health and to prevent unfair competition in the food industry. Analytical techniques play an important role in the detection of food adulteration. This chapter presents an overview of issues associated with food adulteration and discusses many examples around the world. The focus is on intentionally added chemical adulterants, emerging challenges in identifying them in the food supply chain, and recent advancements in analytical techniques utilized for their detection. It also uncovers the recent initiatives taken by statutory agencies to combat food adulteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi A, Ansari II, Shakir M (2021) Highly selective and sensitive benzimidazole based bifunctional sensor for targeting inedible azo dyes in red chilli, red food color, turmeric powder, and Cu (Ii) in coconut water. J Fluoresc 31:1353–1361. https://doi.org/10.1007/s10895-021-02766-5

    Article  CAS  PubMed  Google Scholar 

  • Aiello A, Pizzolongo F, Manzo N et al (2019) A new method to distinguish the Milk adulteration with neutralizers by detection of lactic acid. Food Anal Methods 12:2555–2561. https://doi.org/10.1007/s12161-019-01594-5

    Article  Google Scholar 

  • Anibal D, Rodríguez CV, Albertengo S, L. et al (2016) UV-visible spectroscopy and multivariate classification as a screening tool for determining the adulteration of sauces. Food Anal Methods 9:3117–3124. https://doi.org/10.1007/s12161-016-0485-7

    Article  Google Scholar 

  • AOAC official method 998.12 (2016) C4 plant sugars in honey. AOAC Official Methods of Analysis (20th edn)

    Google Scholar 

  • Aparicio R, Conte LS, Fiebig HJ (2013) Olive oil authentication. In: Aparicio R, Harwood J (eds) Handbook of olive oil: analysis and properties, 2nd edn. Springer, New York, pp 590–653. https://doi.org/10.1007/978-1-4614-7777-8_16

    Chapter  Google Scholar 

  • Bandara WGC, Prabbhath GWK, Sahan DW, Dissanayake CB, Herath VR, Godaliyadda GMRI, Ekanayake MPB, Demini D, Madhujith T (2020) Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. J Food Eng 266:109700, ISSN 0260-8774. https://doi.org/10.1016/j.jfoodeng.2019.109700

    Article  CAS  Google Scholar 

  • Banerjee D, Chowdhary S, Chakraborty S, Bhattacharyya R (2017) Recent advances in detection of food adulteration. In: Gupta RK, Dudeja P, Minhas AS (eds) Food safety in the 21st century: public health perspective. Academic Press, pp 145–160

    Chapter  Google Scholar 

  • Bansal S, Singh A, Mangal M, Mangal AK, Kumar S (2017) Food adulteration: sources, health risks, and detection methods. Crit Rev Food Sci Nutr 57(6):1174–1189. https://doi.org/10.1080/10408398.2014.967834

    Article  CAS  PubMed  Google Scholar 

  • Blanch GP, Mar Caja M, Ruiz del Castillo ML, Herraiz M (1998) Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil. J Agric Food Chem 46:3153–3157

    Article  CAS  Google Scholar 

  • Cabañero AI, Recio JL, Ruperez M (2006) Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection. J Agric Food Chem 54:9719–9727

    Article  PubMed  Google Scholar 

  • Calabrese M, Stancher B, Riccobon P (1995) High-performance liquid chromatography determination of proline isomers in Italian wines. J Agric Food Chem 69:361–366

    Article  CAS  Google Scholar 

  • Camin F, Markus LB, Carsten F, Simon DK, Riedl J, Rossmann A (2017) Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci Technol 61:176–187, ISSN 0924-2244. https://doi.org/10.1016/j.tifs.2016.12.007

    Article  CAS  Google Scholar 

  • Cartoni G, Coccioli F, Jasionowska R, Masci M (1999) Determination of cows’ milk in goats’ milk and cheese by capillary electrophoresis of the whey protein fractions. J Chromatogr A 846(1–2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Casadei E, Valli E, Panni F, Donarski J, Gubern JF, Lucci P, Conte L, Lacoste F, Maquet A, Brereton P, Bendini A, Toschi TG (2021) Emerging trends in olive oil fraud and possible countermeasures. Food Control 124:107902, ISSN 0956-7135. https://doi.org/10.1016/j.foodcont.2021.107902

    Article  Google Scholar 

  • Chachan S, Kishore A, Kumari K, Sharma A (2021) Trends of food adulteration in developing countries and its remedies. In: Food chemistry: the role of additives, preservatives and adulteration, Chapter 6, pp. 165–187

    Google Scholar 

  • Codex Alimentariaus (2010) Codex standard for named vegetable oils. CODEX-STAN 210 (Amended 2003, 2005) 8:1–13

    Google Scholar 

  • Conte L, Bendini A, Valli E, Lucci P, Moret S, Maquet A, Lacoste F, Brereton P, García-González DG, Moreda W, Toschi TG (2020) Olive oil quality and authenticity: a review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci Technol 105:483–493. ISSN 0924–2244. https://doi.org/10.1016/j.tifs.2019.02.025

    Article  CAS  Google Scholar 

  • Dai H, Gao Q, He L (2020) Rapid determination of saffron grade and adulteration by thin-layer chromatography coupled with Raman spectroscopy. Food Anal Methods 13:2128–2137. https://doi.org/10.1007/s12161-020-01828-x

    Article  Google Scholar 

  • De-Souza EMT, Arruda SF, Brandao PO, Siqueira EMA (2000) Electrophoretic analysis to detect and quantify additional whey in milk and dairy beverages. Cienc Tecnol Aliment 20(3):314–317

    Article  Google Scholar 

  • Di Giovacchino L (2000) Technological aspects. In: Harwood J, Aparicio R (eds) Handbook of olive oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5371-4_2

    Chapter  Google Scholar 

  • Dong H, Xiao K, Xian Y, Wu Y (2018) Authenticity determination of honeys with non-extractable proteins by means of elemental analyzer (EA) and liquid chromatography (LC) coupled to isotope ratio mass spectroscopy (IRMS). Food Chem 240:717–724

    Article  CAS  PubMed  Google Scholar 

  • Elflein L, Raezke KP (2008) Improved detection of honey adulteration by measuring differences between 13C/12C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer – isotope ratio mass spectrometry and liquid chromatography – isotope ratio mass spectrometry (δ13C-EA/ LC-IRMS). Apidologie 39:574–587. https://doi.org/10.1051/apido:2008042

    Article  CAS  Google Scholar 

  • England P, Tang W, Kostrzewa M et al (2020) Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry. Sci Rep 10:5160. https://doi.org/10.1038/s41598-020-62113-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2015) Climate change and food security: risks and responses. https://www.fao.org/3/i5188e/I5188E.pdf

  • FAO (2021) MILK_FACTS_EN-2021_I9966 (fao.org). Accessed 1 July 2021

  • Fiamegos Y, Dumitrascu C, Ghidotti M, Guntinas MBD (2020) Use of energy-dispersive X-ray fluorescence combined with chemometric modelling to classify honey according to botanical variety and geographical origin. Anal Bioanal Chem 412(463–472):670–678. https://doi.org/10.1016/B978-0-08-100596-5.21788-5

    Article  Google Scholar 

  • Forte WE (1966) The Food and Drug Administration and the economic adulteration of foods. Indiana Law J 41(3):Article 2

    Google Scholar 

  • FSS Regulation (2011) https://archive.fssai.gov.in/home/fss-legislation/fss-regulations.html

  • Giangaspero M, Decaro N, Turno P, Apicella Q, Gargano P, Buonavoglia C (2019) Pathogen spread and globalization: the case of Pestivirus heterogeneity in southern Italy. Res Vet Sci 125:100–112. https://doi.org/10.1016/j.rvsc.2019.05.017

    Article  PubMed  Google Scholar 

  • Gonzalez M, Gallego M, Valcarcel M (2003) Determination of natural and synthetic colorants in prescreened dairy samples using liquid chromatography-diode array detection. Anal Chem 75:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hansen L, Ferrão MF (2018) Identification of possible Milk adulteration using physicochemical data and multivariate analysis. Food Anal Methods 11:1994–2003. https://doi.org/10.1007/s12161-018-1181-6

    Article  Google Scholar 

  • Hatzakis E (2019) Nuclear magnetic resonance (NMR) spectroscopy in food science: a comprehensive review. Compr Rev Food Sci Food Saf 18:189–220

    Article  PubMed  Google Scholar 

  • Hosseini P, Sokolow SH, Vandegrif KJ, Kilpatrick AM, Daszak P (2010) Predictive power of air travel and socio-economic data for early pandemic spread. PLoS One 5:e12763

    Article  PubMed  PubMed Central  Google Scholar 

  • Jala RCR, Zhang X, Huang H, Gao B, Yu L, Xu X (2015) 3-MCPD fatty acid esters. Chemistry, safety, and technological approaches for their reductions. In: Yu L, Wang S, Sun B-G (eds) Food safety chemistry. Toxicant occurrence, analysis and mitigation. CRC Press, pp 113–131

    Google Scholar 

  • Jooste PJ, Anelich L, Motarjemi Y (2014) Milk and dairy products. Safety of food and beverages. In: Motarjemi Y, Moy GG, Todd ECD (eds) Encyclopedia of food safety. Academic Press\Elsevier, San Diego\London, pp 285–296

    Chapter  Google Scholar 

  • Kar S, Tudu B, Bag AK et al (2018) Application of near-infrared spectroscopy for the detection of metanil yellow in turmeric powder. Food Anal Methods 11:1291–1302. https://doi.org/10.1007/s12161-017-1106-9

    Article  Google Scholar 

  • Katiyar V, Bhanumati S, Rana MK (2014) Food adulteration: the demonic onslaught on health and wellness. In: Rana MK (ed) Herbaceous plants as natural protective food. Scientific Publisher, Jodhpur, pp 498–517

    Google Scholar 

  • Kawashima H, Suto M, Suto N (2019) Stable carbon isotope ratios for organic acids in commercial honey samples. Food Chem 289:49–55. https://doi.org/10.1016/j.foodchem.2019.03.053

    Article  CAS  PubMed  Google Scholar 

  • Khan KM, Krishna H, Majumder SK et al (2015) Detection of urea adulteration in milk using near-infrared Raman spectroscopy. Food Anal Methods 8:93–102. https://doi.org/10.1007/s12161-014-9873-z

    Article  Google Scholar 

  • Lohumi S, Joshi R, Kandpal LM, Lee H, Kim MS, Cho H, Mo C, Seo Y, Rahman A, Cho B (2017) Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Addit Contam 34(5):678–686. https://doi.org/10.1080/19440049.2017.1290828

    Article  CAS  Google Scholar 

  • Mariotti M (2014) Virgin olive oil: definition and standards. In: Peri C (ed) The extra-virgin olive oil handbook. Wiley, Chichester, pp 11–20

    Chapter  Google Scholar 

  • Matute AIR, Soria AC, Castro IM, Sanz ML (2007) A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J Agric Food Chem 55(18):7264–7269

    Article  Google Scholar 

  • McDowell I, Taylor S, Gay C (1995) The phenolic pigment composition of black tea liquors part I: predicting quality. J Agric Food Chem 69:467–474

    Article  CAS  Google Scholar 

  • Mishra R, Martin A, Gowda LR (2009) Effect of traditional Indian household thermal processing operations on the 3-N-oxalyl L-2-3-diaminopropanoic acid (β-ODAP) in grass pea (Lathyrus sativus) as determined by reverse phase high performance liquid chromatography. J Food Compos Anal 22:704–708

    Article  Google Scholar 

  • Molkentin J (2007) Detection of foreign fat in milk fat from different continents bytriacylglycerol analysis. Eur J Lipid Sci and Technol 109:505–510

    Article  CAS  Google Scholar 

  • Mouly P, Gaydou EM, Auffray A (1998) Simultaneous separation of flavone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J Chromatogr A 800:171–179

    Article  CAS  PubMed  Google Scholar 

  • Moy GG, Han FF (2014) History of foodborne disease in Asia – examples from China, India, and Japan. History of food safety and related sciences. In: Motarjemi Y, Moy GG, Todd ECD (eds) Encyclopedia of food safety. Academic Press\Elsevier, San Diego\London, pp 22–27

    Chapter  Google Scholar 

  • Nagraik R, Sharma A, Kumar D, Chawla P, Avvaru PK (2021) Milk adulterant detection: conventional and biosensor based approaches: a review. Sens Bio-Sens Res 33:100433, ISSN 2214. 1804. https://doi.org/10.1016/j.sbsr.2021.100433

    Article  Google Scholar 

  • Nascimento CF, Santos PM, Rodrigues EP, Rocha FRP (2017) Recent advances on determination of milk adulterants. Food Chem 221:1232–1244, ISSN 0308-8146. https://doi.org/10.1016/j.foodchem.2016.11.034

    Article  CAS  PubMed  Google Scholar 

  • Nogueira JMF, Nascimento AMD (1999) Analytical characterization of Madeira wine. J Agric Food Chem 47:566–575

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RCS, Oliveira LS, Franca AS, Augusti R (2009) Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. J Food Compos Anal 22(3):257–261

    Article  CAS  Google Scholar 

  • Ozen BF, Mauer LJ (2002) Detection of hazelnut oil adulteration using FTIR spectroscopy. J Agric Food Chem 50:3898–3901

    Article  CAS  PubMed  Google Scholar 

  • Sattigeri, Appaiah (2010) Development of Food Legislation Around the World. In: Christine E. Boisrobert, Aleksandra Stjepanovic, Sangsuk Oh, Huub L.M. Lelieveld (eds) Ensuring Global Food Safety. Academic Press, pp5–69. https://doi.org/10.1016/B978-0-12-374845-4.00002-3

  • Schieber A (2018) Introduction to food authentication. In: Modern techniques for food authentication, 2nd edn. Academic Press, pp 1–21

    Google Scholar 

  • Simsek A, Bilsel M, Goren AC (2012) 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chem 130(4):1115–1121

    Article  CAS  Google Scholar 

  • Skovgaard N (2007) New trends in emerging pathogens. Int J Food Microbiol 120(3):217–224. https://doi.org/10.1016/j.ijfoodmicro.2007.07.046

    Article  PubMed  Google Scholar 

  • Smith BA, Fazil A (2019) How will climate change impact microbial foodborne disease in Canada? Can Commun Dis Rep 45(4):108–113. https://doi.org/10.14745/ccdr.v45i04a05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares S, Amaral JS, Oliveira BMPP, Mafra I (2017) A comprehensive review on the Main honey authentication issues: production and origin. Compr Rev Food Sci Food Saf 16:1072–1100

    Article  CAS  PubMed  Google Scholar 

  • Spink J (2014) Risks of food adulteration. Safety of food and beverages. In: Encyclopedia of food safety. Academic Press, pp 413–416

    Chapter  Google Scholar 

  • Spink J, Moyer DC (2011) Defining the public health threat of food fraud. J Food Sci 75(9):57–63

    Google Scholar 

  • Spiteri M, Jamin E, Thomas F, Rebours A, Lees M, Rogers KM, Rutledge DN (2015) Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem 189:60–66

    Article  CAS  PubMed  Google Scholar 

  • Thippeswamy R, Martin A, Gowda LR (2007) A reverse phase high performance liquid chromatography method for analyzing of neurotoxin β -N-oxalyl L-α,β-diaminopropanoic acid in legume seeds. Food Chem 101:1290–1295

    Article  CAS  Google Scholar 

  • Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S (2018) Legislation of honey criteria and standards. J Apic Res 57(1):88–96. https://doi.org/10.1080/00218839.2017.1411181

    Article  Google Scholar 

  • Tiryaki YG, Ayvaz H (2017) Quantification of soybean oil adulteration in extra virgin olive oil using portable raman spectroscopy. J Food Meas Charact 11:523–529. https://doi.org/10.1007/s11694-016-9419-8

    Article  Google Scholar 

  • Tsagkaris AS, Koulis GA, Danezis GP, Martakos I, Dasenaki M, Georgiou CA, Thomaidis NS (2021) Honey authenticity: analytical techniques, state of the art and challenges. RSC Adv 11:11273–11294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UN Report (2021) World Population Day – the United Nations https://www.un.org “observances” world-population-day. Accessed on 1st July 2022

  • Valletta M, Ragucci S, Landi N, Di Maro A, Vincenzo Pedone P, Russo R, Chambery A (2021) Mass spectrometry-based protein and peptide profiling for food frauds, traceability and authenticity assessment. Food Chem 365:130456. https://doi.org/10.1016/j.foodchem.2021.130456

    Article  CAS  PubMed  Google Scholar 

  • Vemireddy LR, Archak S, Nagaraju J (2007) Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryzasativa). J Agric Food Chem 55:8112–8117

    Article  CAS  PubMed  Google Scholar 

  • WHO/FAO (2014) Procedural manual joint FAO/WHO food standards programme, codex alimentarius commission (22nd edn, pp 1–212)

    Google Scholar 

  • Xue H, Hu W, Son H, Han Y, Yang Z (2010) Indirect ELISA for detection and quantification of bovine milk in goat milk. J Food Sci Tech 31(24):370–373

    CAS  Google Scholar 

  • Xue XF, Wang Q, Li Y, Wu LM, Chen LZ, Zhao J, Liu FM (2013) 2-Acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup. J Agric Food Chem 61:7488–7493. https://doi.org/10.1021/jf401912u

    Article  CAS  PubMed  Google Scholar 

  • Zambonin C (2021) Maldi-Tof mass spectrometry applications for food fraud detection. Appl Sci 2021(11):3374. https://doi.org/10.3390/app11083374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasu, P., Martin, A. (2023). Chemical Adulterants in Food: Recent Challenges. In: Hebbar, H.U., Sharma, R., Chaurasiya, R.S., Ranjan, S., Raghavarao, K. (eds) Engineering Aspects of Food Quality and Safety. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-30683-9_2

Download citation

Publish with us

Policies and ethics