Abstract
Automatic ICD coding aims at assigning the international classification of disease (ICD) codes to clinical notes documented by clinicians, which is crucial for saving human resources and has attracted much research attention in recent years. However, facing the challenges brought by the complex long textual narratives in clinical notes and the long-tailed data distribution in ICD codes, existing studies are ineffectual in the struggle to extract key information from the clinical notes and handle large amounts of small-data learning problems on the tail codes, which makes it hard to achieve satisfactory performance. In this paper, we present a ClinicalBERT-based model for automatic ICD coding, which can effectively cope with complex long clinical narratives via a segmentation learning mechanism and take advantage of the tree-like structure of ICD codes to transmit information among code nodes. Specifically, a novel hierarchical tree structure learning module is proposed to enable each code to utilize information both from upper and lower nodes of the tree, so that better code classifiers are learned for both head and tail codes. Experiments on MIMIC-III dataset show that our model outperforms current state-of-the-art (SOTA) ICD coding methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alsentzer, E., et al.: Publicly available clinical BERT embeddings. arXiv:1904.03323 (2019)
Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer. arXiv:2004.05150 (2020)
Biswas, B., Pham, T.-H., Zhang, P.: TransICD: transformer based code-wise attention model for explainable ICD coding. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 469–478. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_56
Cao, P., Chen, Y., Liu, K., Zhao, J., Liu, S., Chong, W.: Hypercore: hyperbolic and co-graph representation for automatic ICD coding. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3105–3114 (2020)
Chalkidis, I., Fergadiotis, M., Kotitsas, S., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: An empirical study on large-scale multi-label text classification including few and zero-shot labels. In: EMNLP (2020)
Chen, Y., Ren, J.: Automatic ICD code assignment utilizing textual descriptions and hierarchical structure of ICD code. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 348–353. IEEE (2019)
De Lima, L.R., Laender, A.H., Ribeiro-Neto, B.A.: A hierarchical approach to the automatic categorization of medical documents. In: Proceedings of the Seventh International Conference on Information and Knowledge Management, pp. 132–139 (1998)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)
Feucht, M., Wu, Z., Althammer, S., Tresp, V.: Description-based label attention classifier for explainable ICD-9 classification. arXiv:2109.12026 (2021)
Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 3(1), 1–23 (2021)
Huang, C.W., Tsai, S.C., Chen, Y.N.: PLM-ICD: automatic ICD coding with pretrained language models. arXiv:2207.05289 (2022)
Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 1–9 (2016)
Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)
Li, F., Yu, H.: ICD coding from clinical text using multi-filter residual convolutional neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8180–8187 (2020)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv:1907.11692 (2019)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv:1711.05101 (2017)
McCallum, A.K.: Multi-label text classification with a mixture model trained by EM. In: AAAI 99 Workshop on Text Learning (1999)
Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. arXiv:1802.05695 (2018)
O’malley, K.J., Cook, K.F., Price, M.D., Wildes, K.R., Hurdle, J.F., Ashton, C.M.: Measuring diagnoses: ICD code accuracy. Health Serv. Res. 40(5p2), 1620–1639 (2005)
Pascual, D., Luck, S., Wattenhofer, R.: Towards BERT-based automatic ICD coding: limitations and opportunities. arXiv:2104.06709 (2021)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)
Shi, H., Xie, P., Hu, Z., Zhang, M., Xing, E.P.: Towards automated ICD coding using deep learning. arXiv:1711.04075 (2017)
Song, C., Zhang, S., Sadoughi, N., Xie, P., Xing, E.: Generalized zero-shot text classification for ICD coding. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 4018–4024 (2021)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv:1503.00075 (2015)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Vu, T., Nguyen, D.Q., Nguyen, A.: A label attention model for ICD coding from clinical text. arXiv:2007.06351 (2020)
Xie, P., Xing, E.: A neural architecture for automated ICD coding. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1066–1076 (2018)
Xie, X., Xiong, Y., Yu, P.S., Zhu, Y.: EHR coding with multi-scale feature attention and structured knowledge graph propagation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 649–658 (2019)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Yuan, Z., Tan, C., Huang, S.: Code synonyms do matter: Multiple synonyms matching network for automatic ICD coding. arXiv:2203.01515 (2022)
Zhang, Z., Liu, J., Razavian, N.: Bert-xml: Large scale automated ICD coding using BERT pretraining. arXiv:2006.03685 (2020)
Zhou, T., et al.: Automatic ICD coding via interactive shared representation networks with self-distillation mechanism. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5948–5957 (2021)
Acknowledgements
This work is partially supported by the National Key Research and Development Plan Project 2022YFC3600901, CNKLSTISS, and NSF through grants IIS-1763365, IIS-2106972.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kang, B. et al. (2023). Automatic ICD Coding Based on Segmented ClinicalBERT with Hierarchical Tree Structure Learning. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13946. Springer, Cham. https://doi.org/10.1007/978-3-031-30678-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-30678-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30677-8
Online ISBN: 978-3-031-30678-5
eBook Packages: Computer ScienceComputer Science (R0)