Abstract
Plonk is a widely used succinct non-interactive proof system that uses univariate polynomial commitments. Plonk is quite flexible: it supports circuits with low-degree “custom” gates as well as circuits with lookup gates (a lookup gate ensures that its input is contained in a predefined table). For large circuits, the bottleneck in generating a Plonk proof is the need for computing a large FFT.
We present HyperPlonk, an adaptation of Plonk to the boolean hypercube, using multilinear polynomial commitments. HyperPlonk retains the flexibility of Plonk but provides several additional benefits. First, it avoids the need for an FFT during proof generation. Second, and more importantly, it supports custom gates of much higher degree than Plonk without harming the running time of the prover. Both of these can dramatically speed up the prover’s running time. Since HyperPlonk relies on multilinear polynomial commitments, we revisit two elegant constructions: one from Orion and one from Virgo. We show how to reduce the Orion opening proof size to less than 10 KB (an almost factor 1000 improvement) and show how to make the Virgo FRI-based opening proof simpler and shorter (This is an extended abstract. The full version is available on EPRINT[22]).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
The constants depend linearly on the degree of the custom gates. These numbers are for simple degree 2 arithmetic circuits.
- 2.
A more general Plonkish arithmetization [54] supports wider tuples, but triples are sufficient here.
- 3.
These are fields where there exists an element that has a smooth order of at least d.
- 4.
Recent breakthrough results have shown that polynomial multiplication is \(O(d\log (d))\) over arbitrary finite fields [35] and there have been efforts toward building practical, fast multiplication algorithms for arbitrary fields [9]. In practice, and especially for low-degree polynomials, using Karatsuba multiplication might be faster.
- 5.
Here we further require \(|\mathbb {F}| \ge 2^{\mu }\) so that \([\textbf{x}]\) never overflow.
- 6.
We can pad zeroes if the actual number is not a power of two.
- 7.
We can pad with dummy states if the number of steps is not a power of two.
References
Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-45
Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Takahashi, A.: ECLIPSE: enhanced compiling method for pedersen-committed zkSNARK engines. Cryptology ePrint Archive, Report 2021/934 (2021). https://eprint.iacr.org/2021/934
Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: transparent constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022). https://eprint.iacr.org/2022/419
Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)
Barbara, M., et al.: Reinforced concrete: fast hash function for zero knowledge proofs and verifiable computation. Cryptology ePrint Archive, Report 2021/1038 (2021). https://eprint.iacr.org/2021/1038
Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl, July 2018. https://doi.org/10.4230/LIPIcs.ICALP.2018.14
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_23
Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast fourier transform (ECFFT) part ii: scalable and transparent proofs over all large fields (2022)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Ben-Sasson, E., Sudan, M.: Short pcps with polylog query complexity. SIAM J. Comput. 38(2), 551–607 (2008)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012. https://doi.org/10.1145/2090236.2090263
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12
Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2
Bootle, J., Chiesa, A., Hu, Y., Orrù, M.: Gemini: elastic SNARKs for diverse environments. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 427–457. Springer, Heidelberg, May/June 2022. https://doi.org/10.1007/978-3-031-07085-3_15
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00020
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_1
Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press, November 2019. https://doi.org/10.1145/3319535.3339820
Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-time prover and high-degree custom gates. Cryptology ePrint Archive, Report 2022/1355 (2022). https://eprint.iacr.org/2022/1355
Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its applications. Cryptology ePrint Archive, Report 2017/305 (2017). https://eprint.iacr.org/2017/305
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Drake, J.: Plonk-style SNARKs without FFTs (2019). https://notes.ethereum.org/DLRqK9V7RIOsTZkab8HmQ?view
Gabizon, A.: Multiset checks in plonk and plookup. https://hackmd.io/@arielg/ByFgSDA7D
Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315 (2020). https://eprint.iacr.org/2020/315
Gabizon, A., Williamson, Z.J.: Proposal: the turbo-plonk program syntax for specifying snark programs (2020). https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043 (2021). https://eprint.iacr.org/2021/1043
Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: a new hash function for zero-knowledge proof systems. In: Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021, pp. 519–535. USENIX Association, August 2021
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Harvey, D., Van Der Hoeven, J.: Polynomial multiplication over finite fields in time. J. ACM (JACM) 69(2), 1–40 (2022)
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Kattis, A.A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list polynomial commitments. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 1725–1737. ACM Press, November 2022. https://doi.org/10.1145/3548606.3560657
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1
Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM (JACM) 39(4), 859–868 (1992)
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_13
Pearson, L., Fitzgerald, J., Masip, H., Bellés-Muñoz, M., Muñoz-Tapia, J.L.: PlonKup: reconciling PlonK with plookup. Cryptology ePrint Archive, Report 2022/086 (2022). https://eprint.iacr.org/2022/086
Posen, J., Kattis, A.A.: Caulk+: table-independent lookup arguments. Cryptology ePrint Archive, Report 2022/957 (2022). https://eprint.iacr.org/2022/957
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs. Cryptology ePrint Archive, Report 2020/1275 (2020). https://eprint.iacr.org/2020/1275
System, E.: Jellyfish jellyfish cryptographic library (2022). https://github.com/EspressoSystems/jellyfish
Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_5
Thaler, J.: Proofs, arguments, and zero-knowledge (2020)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00060
Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24
Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time. Cryptology ePrint Archive, Report 2022/1010 (2022). https://eprint.iacr.org/2022/1010
Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 299–328. Springer, Heidelberg, August 2022. https://doi.org/10.1007/978-3-031-15985-5_11
Xiong, A.L., et al.: VERI-ZEXE: decentralized private computation with universal setup. Cryptology ePrint Archive, Report 2022/802 (2022). https://eprint.iacr.org/2022/802
Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.: Caulk: lookup arguments in sublinear time. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 3121–3134. ACM Press, November 2022. https://doi.org/10.1145/3548606.3560646
Zcash: PLONKish arithmetization. https://zcash.github.io/halo2/concepts/arithmetization.html (2022)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and Privacy, pp. 859–876. IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.00052
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Chen, B., Bünz, B., Boneh, D., Zhang, Z. (2023). HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14005. Springer, Cham. https://doi.org/10.1007/978-3-031-30617-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-30617-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30616-7
Online ISBN: 978-3-031-30617-4
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/