Skip to main content

Strategic Methods of Nanoremediation Through Nanomaterials Synthesized From Microbes: An Overview

  • Chapter
  • First Online:
Green Nanoremediation

Abstract

Nowadays, the requirement for nanotechnology has increased. It plays a vital role in treating environmental pollution. This process involves the application of exorbitant reactive nanomaterials as a strategy to act as a catalyst, immobilize, and reduce contamination, thereby reducing the hazard to individuals’ health and to the environment. Different kinds of green synthesized nanomaterials from microbes, including carbon nanotubes, nanoscale zero-valent iron, magnetic and metallic nanoparticles, semiconductor nanoparticles, and silica nanoparticles, are used as a novel strategy for the safe and durable removal of persistent organic pollutants. The production and development of innovative materials in industrial products, as well as their benefits and drawbacks, are the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., & Kulkarni, S. (2009). Materials Letters, 63, 1231.

    Article  CAS  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V., et al. (2003). Nanotechnology, 14a, 824.

    Article  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2005). Journal of Biomedical Nanotechnology, 1, 47.

    Article  CAS  Google Scholar 

  • Belal, E., & El-Ramady, H. (2016). Nanoparticles in water, soils and agriculture. In S. Ranjan et al. (Eds.), Nanoscience in food and agriculture 2 (Sustainable Agriculture Reviews) (Vol. 21). Springer International Publishing. https://doi.org/10.1007/978-3-319-39306-3_10

    Chapter  Google Scholar 

  • Beveridge, T. J., & Murray, R. G. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141, 876–887.

    Article  CAS  Google Scholar 

  • Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., et al. (1997). Advances in Microbial Physiology, 38, 177.

    Article  CAS  Google Scholar 

  • Bruins, R. M., Kapil, S., & Oehme, S. W. (2000). Ecotoxicology and Environmental Safety, 45, 198.

    Article  CAS  Google Scholar 

  • Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., et al. (1989). Nature, 338, 596.

    Article  CAS  Google Scholar 

  • Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3, 203–208. https://doi.org/10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  • Elechiguerra, J. L., Burt, J. L., Morones, J. R., Bragad, A. C., Gao, X., & Lara, H. H. (2005). Journal of Nanbiotechnology, 3, 6.

    Article  Google Scholar 

  • Grieger, K. D., Fjordøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron particles (nZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.

    Article  CAS  Google Scholar 

  • Guo, Z., He, S., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Materials Letters, 61, 3984.

    Article  Google Scholar 

  • Henglein, A. (1989). Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose deposition due to the presence of high Z materials during irradiation of aqueous media, 89, 1861.

    Google Scholar 

  • Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes – A review. Colloids and Surfaces B: Biointerfaces, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  Google Scholar 

  • Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., Akter, A., et al. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160.

    Article  CAS  Google Scholar 

  • Khan, A., Roy, A., Bhasin, S., Emran, T. B., Khusro, A., Eftekhari, A., et al. (2022). Nanomaterials: An alternative source for biodegradation of toxic dyes. Food and Chemical Toxicology, 164, 112996.

    Article  CAS  Google Scholar 

  • Kirschling, T. L., Gregory, K. B., Minkley, E. G., Jr., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology, 44, 3474–3480.

    Article  CAS  Google Scholar 

  • Koul, B., & Taak, P. (2018). Biotechnological strategies for effective remediation of polluted soils (XVII, 240 pages). Springer. https://doi.org/10.1007/978-981-13-2420-8

    Book  Google Scholar 

  • Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Biotechnology and Bioengineering, 78, 583.

    Article  CAS  Google Scholar 

  • Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., et al. (2003). Nanotechnology, 14, 95.

    Article  CAS  Google Scholar 

  • Kumar, U., Shete, A., Harle, A. S., Kasyutich, O., Schwarzacher, W., Pundle, A., et al. (2008). Chemistry of Materials, 20, 1484.

    Article  CAS  Google Scholar 

  • Lin, Z., Wu, J., Xue, R., & Yang, Y. (2005). Spectrochimica Acta Part A, 61, 761.

    Article  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L., & Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, 330, 252.

    Google Scholar 

  • Makarov, V. V., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.

    Article  CAS  Google Scholar 

  • Mao, C., Flynn, C. E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., et al. (2003). Proceedings of the National Academy of Sciences of the United States of America, 10, 6946.

    Article  Google Scholar 

  • Michael, A., Singh, A., Roy, A., & Islam, M. (2022). Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 3142674.

    Article  Google Scholar 

  • Mittal, S., & Roy, A. (2021). Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic degradation of dyes (pp. 287–308). Elsevier.

    Chapter  Google Scholar 

  • Mukherjee, P., Ahamad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R. R., Parischa, R., Ajayakumar, P. V., Alam, M., Sastry, M., & Kumar, R. (2001). Angewandte Chemie International Edition, 40, 3585.

    Article  CAS  Google Scholar 

  • Mukherjee, S., et al. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 4, 316–335.

    Article  Google Scholar 

  • Nagore, P., Ghotekar, S., Mane, K., Ghoti, A., Bilal, M., & Roy, A. (2021). Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. BioNanoScience, 11, 579–589.

    Article  Google Scholar 

  • Nair, B., & Pradeep, T. (2002). Crystal Growth & Design, 2, 293.

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at nanolevel, 311, 622.

    Google Scholar 

  • Okafor, F., et al. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10, 5221–5238.

    Article  Google Scholar 

  • Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., et al. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University – Science, 34, 101869.

    Article  Google Scholar 

  • Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: A review for the biennium 2008–2010. Journal of Hazardous Materials, 186, 1–15.

    Article  CAS  Google Scholar 

  • Pereira, L., et al. (2015). Metallic nanoparticles, microbial synthesis and unique properties for biotechnological applications, bio availability and biotransformation. Critical Reviews in Biotechnology, 35, 114–128.

    Article  CAS  Google Scholar 

  • Philip, D. (2009). Spectrochimica Acta Part A, 73, 374.

    Article  Google Scholar 

  • Prasad, R., & Aranda, E. (2018). Approaches in bioremediation (Nanotechnology in the Life Science). Springer. https://doi.org/10.1007/978-3-030-02369-0

    Book  Google Scholar 

  • Raina, S., Roy, A., & Bharadvaja, N. (2020). Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environmental Nanotechnology, Monitoring & Management, 13, 100278.

    Article  Google Scholar 

  • Rajan, S. (2011). Nanotechnology in groundwater remediation. International Journal of Environmental Science and Development, 2, 182–187.

    Article  Google Scholar 

  • Roco, M. C. (2005). The emergence and policy implications of converging new technologies integrated from the nanoscale. Journal of Nanoparticle Research, 7, 129–143.

    Article  Google Scholar 

  • Roy, A., & Bharadvaja, N. (2021). Efficient removal of heavy metals from artificial wastewater using biochar. Environmental Nanotechnology, Monitoring & Management, 16, 100602.

    Article  CAS  Google Scholar 

  • Roy, A., Murthy, H. A., Ahmed, H. M., Islam, M. N., & Prasad, R. (2021a). Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes. Journal of Renewable Materials, 10(5), 1–20. https://doi.org/10.32604/jrm.2022.019410

    Article  CAS  Google Scholar 

  • Roy, A., Sharma, A., Yadav, S., Jule, L. T., & Krishnaraj, R. (2021b). Nanomaterials for remediation of environmental pollutants. Bioinorganic Chemistry and Applications, 2021, 1764647.

    Article  Google Scholar 

  • Roy, A., Pandit, C., Gacem, A., Alqahtani, M. S., Bilal, M., Islam, S., et al. (2022a). Biologically derived gold nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 8184217.

    Article  Google Scholar 

  • Roy, A., Roy, M., Alghamdi, S., Dablool, A. S., Almakki, A. A., Ali, I. H., et al. (2022b). Role of microbes and nanomaterials in the removal of pesticides from wastewater. International Journal of Photoenergy, 2022, 2131583.

    Article  Google Scholar 

  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022c). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 2022, 3636481.

    Article  Google Scholar 

  • Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Journal of Materials Chemistry, 13, 1822.

    Article  CAS  Google Scholar 

  • Sharma, N. C., Sahi, S. V., Nath, S., Parsons, J. G., Gardea-Torresdey, J. L., & Pal, T. (2007). Environmental Science & Technology, 41, 5137.

    Article  CAS  Google Scholar 

  • Shenton, W., Douglas, T., Young, M., Stubbs, G., & Mann, S. (1999). Advanced Materials, 11, 253.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Kelly, S. D., Kemner, K. M., & Banfield, J. F. (2002). Nature, 419, 134.

    Article  CAS  Google Scholar 

  • Verma, A., Roy, A., & Bharadvaja, N. (2020). Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier.

    Google Scholar 

  • Yadav, V. K., Gnanamoorthy, G., Ali, D., Bera, S. P., Roy, A., Kumar, G., et al. (2022). Cytotoxicity, removal of Congo red dye in aqueous solution using synthesized amorphous iron oxide nanoparticles from incense sticks ash waste. Journal of Nanomaterials, 2022, 5949595.

    Article  Google Scholar 

  • Zhang, Y., He, S., Guo, Z., & Gu, N. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata, 24, 476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Immanuel Suresh, J., Yogesh, P., Andrew Pradeep, M. (2023). Strategic Methods of Nanoremediation Through Nanomaterials Synthesized From Microbes: An Overview. In: Policarpo Tonelli, F.M., Roy, A., Ananda Murthy, H.C. (eds) Green Nanoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-30558-0_3

Download citation

Publish with us

Policies and ethics