Skip to main content

Enumeration of Minimal Tropical Connected Sets

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2023)

Abstract

A subset of vertices in a vertex-colored graph is called tropical if vertices of each color present in the subset. This paper is dedicated to the enumeration of all minimal tropical connected sets in various classes of graphs. We show that all minimal tropical connected sets can be enumerated in \(\mathcal {O}(1.7142^n)\) time on n-vertex interval graph which improves previous \(\mathcal {O}(1.8613^n)\) upper bound obtained by Kratsch et al. Moreover, for chordal and general class of graphs we present algorithms with running times in \(\mathcal {O}(1.937^n)\) and \(\mathcal {O}(1.999958^n)\), respectively. The last two algorithms answer question implicitly asked in the paper [Kratsch et al. SOFSEM 2017]: «Is the number of tropical sets significantly smaller than the trivial upper bound \(2^n\)?».

Work of Ivan Bliznets is supported by the project CRACKNP that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 853234).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Tale, P.: Path contraction faster than \(2^n\). SIAM J. Discret. Math. 34(2), 1302–1325 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betzler, N., Van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)

    Article  Google Scholar 

  3. Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Largest chordal and interval subgraphs faster than \(2^n\). Algorithmica 76(2), 569–594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bliznets, I., Sagunov, D.: Solving target set selection with bounded thresholds faster than \(2^n\). Algorithmica, 1–22 (2022)

    Google Scholar 

  5. Böcker, S., Rasche, F., Steijger, T.: Annotating fragmentation patterns. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 13–24. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04241-6_2

    Chapter  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM (1999)

    Google Scholar 

  7. Chapelle, M., Cochefert, M., Kratsch, D., Letourneur, R., Liedloff, M.: Exact exponential algorithms to find a tropical connected set of minimum size. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 147–158. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13524-3_13

    Chapter  MATH  Google Scholar 

  8. Chapelle, M., Cochefert, M., Kratsch, D., Letourneur, R., Liedloff, M.: Exact exponential algorithms to find tropical connected sets of minimum size. Theor. Comput. Sci. 676, 33–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, J., Italiano, G.F., Manoussakis, Y., Thang, N.K., Pham, H.P.: Tropical paths in vertex-colored graphs. J. Comb. Optim. 42(3), 476–498 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, J., Manoussakis, Y., Phong, H., Tuza, Z.: Tropical matchings in vertex-colored graphs. Electron. Notes Discrete Math. 62, 219–224 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Couturier, J.F., Letourneur, R., Liedloff, M.: On the number of minimal dominating sets on some graph classes. Theoret. Comput. Sci. 562, 634–642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  13. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-disjoint connected subgraphs problem faster than \(2^n\). Algorithmica 70(2), 195–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Irredundant set faster than O(2n). In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 288–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13073-1_26

    Chapter  Google Scholar 

  15. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than \(o(2^n)\). Inf. Process. Lett. 111(23–24), 1099–1103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. d’Auriac, J.A.A., et al.: Tropical dominating sets in vertex-coloured graphs. J. Discrete Algorithms 48, 27–41 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. d’Auriac, J.A.A., Cohen, N., El Mafthoui, H., Harutyunyan, A., Legay, S., Manoussakis, Y.: Connected tropical subgraphs in vertex-colored graphs. Discrete Math. Theor. Comput. Sci. 17(3), 327–348 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Fomin, F.V., Gaspers, S., Saurabh, S.: Improved exact algorithms for counting 3- and 4-colorings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 65–74. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8_9

    Chapter  MATH  Google Scholar 

  19. Fomin, F.V., Giannopoulou, A.C., Pilipczuk, M.: Computing tree-depth faster than \(2^n\). Algorithmica 73(1), 202–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than \(2^n\). Algorithmica 52(2), 153–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms (TALG) 5(1), 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fomin, F.V., Kratsch, D.: Exact exponential algorithms (2010)

    Google Scholar 

  23. Golovach, P.A., Heggernes, P., Kratsch, D., Saei, R.: Enumeration of minimal connected dominating sets for chordal graphs. Discrete Appl. Math. 278, 3–11 (2020). https://doi.org/10.1016/j.dam.2019.07.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Golovach, P.A., Kratsch, D., Liedloff, M., Sayadi, M.Y.: Enumeration and maximum number of minimal dominating sets for chordal graphs. Theor. Comput. Sci. 783, 41–52 (2019). https://doi.org/10.1016/j.tcs.2019.03.017

    Article  MathSciNet  MATH  Google Scholar 

  25. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  26. Heggernes, P.: Minimal triangulations of graphs: a survey. Discret. Math. 306(3), 297–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kratsch, D., Liedloff, M., Sayadi, M.Y.: Enumerating minimal tropical connected sets. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 217–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_17

    Chapter  Google Scholar 

  28. Krzywkowski, M.: Trees having many minimal dominating sets. Inf. Process. Lett. 113(8), 276–279 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)

    Article  Google Scholar 

  30. Lawer, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. (1976)

    Google Scholar 

  31. Le, H., Highley, T.: Tropical vertex-disjoint cycles of a vertex-colored digraph: barter exchange with multiple items per agent. Discrete Math. Theor. Comput. Sci. 20 (2018)

    Google Scholar 

  32. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Razgon, I.: Computing minimum directed feedback vertex set in \(o*(1.9977^n)\). In: Theoretical Computer Science, pp. 70–81. World Scientific (2007)

    Google Scholar 

  34. Telle, J.A., Villanger, Y.: Connecting terminals and 2-disjoint connected subgraphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 418–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45043-3_36

    Chapter  Google Scholar 

  35. Vassilevska Williams, V.: Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In: 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Lucas Meijer and anonymous reviewers for comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bliznets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bliznets, I., Sagunov, D., Tagin, E. (2023). Enumeration of Minimal Tropical Connected Sets. In: Mavronicolas, M. (eds) Algorithms and Complexity. CIAC 2023. Lecture Notes in Computer Science, vol 13898. Springer, Cham. https://doi.org/10.1007/978-3-031-30448-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30448-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30447-7

  • Online ISBN: 978-3-031-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics