Abstract
Proxy-apps, or mini-apps, are simple self-contained benchmark codes with performance-relevant kernels extracted from real applications. Initially used to facilitate software-hardware co-design, they are a crucial ingredient for serious performance engineering, especially when dealing with large-scale production codes. MD-Bench is a new proxy-app in the area of classical short-range molecular dynamics. In contrast to existing proxy-apps in MD (e.g. miniMD and coMD) it does not resemble a single application code, but implements state-of-the art algorithms from multiple applications (currently LAMMPS and GROMACS). The MD-Bench source code is understandable, extensible and suited for teaching, benchmarking and researching MD algorithms. Primary design goals are transparency and simplicity, a developer is able to tinker with the source code down to the assembly level. This paper introduces MD-Bench, explains its design and structure, covers implemented optimization variants, and illustrates its usage on three examples.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
MD-Bench is open source and available under LGPL3 License.
References
Abel, A., Reineke, J.: A parametric microarchitecture model for accurate basic block throughput prediction on recent intel CPUs. In: ICS 2022, pp. 1–12, June 2022
Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers - particle-particle particle-mesh. Comput. Phys. Commun. 183(3), 449–459 (2012)
Edwards, H.C., Trott, C.R.: Kokkos: enabling performance portability across manycore architectures. In: 2013 Extreme Scaling Workshop (xsw 2013), pp. 18–24, August 2013
Gecht, M., Siggel, M., Linke, M., Hummer, G., Köfinger, J.: Mdbenchmark: a toolkit to optimize the performance of molecular dynamics simulations. J. Chem. Phys. 153(14), 144105 (2020). https://doi.org/10.1063/5.0019045
Gratl, F.A., Seckler, S., Tchipev, N., Bungartz, H.J., Neumann, P.: Autopas: auto-tuning for particle simulations. In: 2019 IEEE IPDPSW, pp. 748–757 (2019)
Intel: Intel architecture code analyzer, August 2019. https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
Laukemann, J., Hammer, J., Hofmann, J., Hager, G., Wellein, G.: Automated instruction stream throughput prediction for intel and AMD microarchitectures. In: 2018 IEEE/ACM PMBS, pp. 121–131 (2018)
Machado, R.R.L., et al.: tinymd: mapping molecular dynamics simulations to heterogeneous hardware using partial evaluation. J. Comput. Sci. 54, 101425 (2021)
Pennycook, S.J., Hughes, C.J., Smelyanskiy, M., Jarvis, S.: Exploring simd for molecular dynamics, using intel® xeon® processors and intel® xeon phi coprocessors. In: 2013 IEEE 27th IPDPS, pp. 1085–1097 (2013)
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)
Páll, S., Hess, B.: A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 184(12), 2641–2650 (2013)
van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)
Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool suite for x86 multicore environments. In: Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures, San Diego CA (2010)
Acknowledgements
The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) - 440719683.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ravedutti Lucio Machado, R., Eitzinger, J., Köstler, H., Wellein, G. (2023). MD-Bench: A Generic Proxy-App Toolbox for State-of-the-Art Molecular Dynamics Algorithms. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13826. Springer, Cham. https://doi.org/10.1007/978-3-031-30442-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-30442-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30441-5
Online ISBN: 978-3-031-30442-2
eBook Packages: Computer ScienceComputer Science (R0)
