Skip to main content

A Preliminary Study on AI for Telemetry Data Compression

  • Conference paper
  • First Online:
Key Digital Trends in Artificial Intelligence and Robotics (ICDLAIR 2022)

Abstract

Compression of telemetry streams is fundamental for both their storage and transmission. Recently, machine learning has been employed to enhance traditional data compression algorithms specifically for telemetry compression, both lossless and lossy. However, state-of-the-art telemetry compression algorithms are usually tailored to work with very specific datasets and can hardly generalize to different datasets. Moreover, much simpler traditional algorithms can often obtain better compression ratios with less computational complexity. In this work, we attempt a preliminary experiment aiming to verify the effectiveness of one of the most representative AI-based lossless telemetry compression algorithms against three different NASA datasets. Experimental results show that the model still struggles to perform better than traditional approaches, highlighting the necessity to design and study more sophisticated machine learning models for telemetry compression with a broader applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original dataset download page was taken down and NASA is currently in the process of putting data back online (https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository). We were only able to retrieve data from 12 batteries.

References

  1. Arias Chao, M., Kulkarni, C., Goebel, K., Fink, O.: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data 6(1), 5 (2021)

    Article  Google Scholar 

  2. Baig, S.R., Iqbal, W., Berral, J.L., Erradi, A., Carrera, D., et al.: Real-time data center’s telemetry reduction and reconstruction using Markov chain models. IEEE Systems J. 13(4), 4039–4050 (2019)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  4. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.P., Basto, J.P., Alcalá, S.G.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Indus. Eng. 137, 106024 (2019)

    Google Scholar 

  5. Ciaparrone, G., Sánchez, F.L., Tabik, S., Troiano, L., Tagliaferri, R., Herrera, F.: Deep learning in video multi-object tracking: a survey. Neurocomputing 381, 61–88 (2020)

    Article  Google Scholar 

  6. Del Testa, D., Rossi, M.: Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 22(12), 2304–2308 (2015)

    Article  Google Scholar 

  7. Deutsch, P.: Deflate compressed data format specification version 1.3. Tech. Rep., RFC Editor (1996)

    Google Scholar 

  8. Golomb, S.: Run-length encodings (corresp.). IEEE Trans. Inf. Theory 12(3), 399–401 (1966)

    Google Scholar 

  9. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  10. Levenets, A., Chye, E.U., Bogachev, I.: Application of machine learning methods for classification of telemetric frames by compression algorithms. In: 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), pp. 505–509. IEEE (2019)

    Google Scholar 

  11. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 3059968 (2021)

    Google Scholar 

  12. NASA: PDS atmospheres node data set catalog. https://pds-atmospheres.nmsu.edu/cgi-bin/getdir.pl?&volume=mslrem_0001. Accessed 30 Sept 2022

  13. NASA: Prognostics center of excellence data set repository. https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository. Accessed 30 Sept 2022

  14. Ni, J., Young, T., Pandelea, V., Xue, F., Cambria, E.: Recent advances in deep learning based dialogue systems: a systematic survey. Artif. Intell. Rev. 56, 3055–3155 (2022)

    Google Scholar 

  15. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rissanen, J., Langdon, G.G.: Arithmetic coding. IBM J. Res. Dev. 23(2), 149–162 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Russell, M., Wang, P.: Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring. Mech. Syst. Signal Process. 168, 108709 (2022)

    Article  Google Scholar 

  18. Saha, B., Goebel, K.: Battery data set. NASA AMES Prognostics Data Repository (2007)

    Google Scholar 

  19. Shehab, A.F., Elshafey, M.A., Mahmoud, T.A.: Recurrent neural network based prediction to enhance satellite telemetry compression. In: 2020 IEEE Aerospace Conference, pp. 1–11. IEEE (2020)

    Google Scholar 

  20. Shi, X., Shen, Y., Wang, Y., Bai, L.: Differential-clustering compression algorithm for real-time aerospace telemetry data. IEEE Access 6, 57425–57433 (2018)

    Article  Google Scholar 

  21. Sun, B., Feng, H.: Efficient compressed sensing for wireless neural recording: a deep learning approach. IEEE Signal Process. Lett. 24(6), 863–867 (2017)

    Article  Google Scholar 

  22. Sunil Kumar, K., Shivashankar, D., Keshavamurthy, K.: Bio-signals compression using auto encoder. J. Electr. Comput. Eng. Q 2, 424–433 (2021)

    Google Scholar 

  23. Tang, B., Pan, Z., Yin, K., Khateeb, A.: Recent advances of deep learning in bioinformatics and computational biology. Front. Genet. 10, 214 (2019)

    Article  Google Scholar 

  24. Troiano, L., Birtolo, C., Armenise, R., Cirillo, G.: Optimization of menu layouts by means of genetic algorithms. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 242–253. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78604-7_21

    Chapter  Google Scholar 

  25. Troiano, L., Rodríguez-Muñiz, L., Díaz, I.: Discovering user preferences using dempster-Shafer theory. Fuzzy Sets Syst. 278, 98–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Troiano, L., Rodríguez-Muñiz, L., Marinaro, P., Díaz, I.: Statistical analysis of parametric t-norms. Inf. Sci. 257, 138–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Troiano, L., Rodríguez-Muñiz, L., Ranilla, J., Díaz, I.: Interpretability of fuzzy association rules as means of discovering threats to privacy. Int. J. Comput. Math. 89(3), 325–333 (2012)

    Article  Google Scholar 

  28. Welch, T.A.: A technique for high-performance data compression. Computer 17(06), 8–19 (1984)

    Article  Google Scholar 

  29. Yildirim, O., San Tan, R., Acharya, U.R.: An efficient compression of ECG signals using deep convolutional autoencoders. Cogn. Syst. Res. 52, 198–211 (2018)

    Article  Google Scholar 

  30. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Benedetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciaparrone, G., Benedetto, V., Gissi, F. (2023). A Preliminary Study on AI for Telemetry Data Compression. In: Troiano, L., Vaccaro, A., Kesswani, N., Díaz Rodriguez, I., Brigui, I., Pastor-Escuredo, D. (eds) Key Digital Trends in Artificial Intelligence and Robotics. ICDLAIR 2022. Lecture Notes in Networks and Systems, vol 670. Springer, Cham. https://doi.org/10.1007/978-3-031-30396-8_12

Download citation

Publish with us

Policies and ethics