Skip to main content

The Klein Paradox in the Phase Space Quantum Mechanics

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXIX (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 181 Accesses

Abstract

The Klein paradox is considered in the context of quantum mechanics in phase space. The external degrees of freedom are represented together with the internal degrees of freedom in the Hilbert space \(L^2(\mathbb {R}) \otimes \mathbb {C}^2\). The tunneling coefficients are extrapolated with the help of a continuity equation newly formulated in terms of a density operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum mechanics as a deformation of classical mechanics. Letters in Mathematical Physics 1(6), 521–530 (1977). https://doi.org/10.1007/bf00399745

    Article  MathSciNet  MATH  Google Scholar 

  2. Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12(7), 405–460 (1946). https://doi.org/10.1016/s0031-8914(46)80059-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Moyal, J.E.: Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society 45(1), 99–124 (1949). https://doi.org/10.1017/s0305004100000487

    Article  MathSciNet  MATH  Google Scholar 

  4. Przanowski, M., Tosiek, J.: From the discrete Weyl–Wigner formalism for symmetric ordering to a number–phase Wigner function. Journal of Mathematical Physics 58(10), 102106 (2017). https://doi.org/10.1063/1.5008653

    Article  MathSciNet  MATH  Google Scholar 

  5. Przanowski, M., Tosiek, J., Turrubiates, F.J.: The Weyl-Wigner-Moyal Formalism on a Discrete Phase Space. I. A Wigner Function for a Nonrelativistic Particle with Spin. Fortschritte der Physik 67(12), 1900080 (2019). https://doi.org/10.1002/prop.201900080

    MATH  Google Scholar 

  6. Strange, P.: Relativistic Quantum Mechanics. Cambridge University Press (2010). With applications in condensed matter and atomic physics

    Google Scholar 

  7. Tosiek, J., Przanowski, M.: The Phase Space Model of Nonrelativistic Quantum Mechanics. Entropy 23(5) (2021). https://doi.org/10.3390/e23050581

  8. Weyl, H.: The Theory of Groups and Quantum Mechanics. Methuen: London, UK (1931). Reprinted Dover, New York 1950

    Google Scholar 

  9. Wigner, E.: On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Campobasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campobasso, L., Tosiek, J. (2023). The Klein Paradox in the Phase Space Quantum Mechanics. In: Kielanowski, P., Dobrogowska, A., Goldin, G.A., Goliński, T. (eds) Geometric Methods in Physics XXXIX. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-30284-8_6

Download citation

Publish with us

Policies and ethics