Skip to main content

The Parametrically Extended Kardar–Parisi–Zhang Equation, Its Dark-Type Generalization, and Integrability

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXIX (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 189 Accesses

Abstract

A physical problem of existence of conservation laws for a parametrically dependent Kardar–Parisi–Zhang equation, describing a spin glass growth dynamics, was analyzed within the gradient-holonomic- and optimal-control-based algorithms. The finitely parametric functional extensions of the Kardar–Parisi–Zhang equation and related conservation laws are constructed. A relationship of the Kardar–Parisi–Zhang equation to a so-called dark -type class of integrable dynamical systems on functional manifolds with hidden symmetries is stated.

In memoriam of outstanding Polish mathematical physicist

Anatol Odzijewicz ( 6.10.1947 –18.04.2022)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass. (1978)

    MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, second edn. Springer-Verlag, New York (1989). https://doi.org/10.1007/978-1-4757-2063-1

    Book  Google Scholar 

  3. Bellman, R.: Dynamic programming. Dover Publications, Inc., Mineola, NY (2003)

    MATH  Google Scholar 

  4. Blackmore, D., Prykarpatsky, A.K., Özçağ, E., Soltanov, K.: Integrability Analysis of a Two-Component Burgers-Type Hierarchy. Ukrainian Mathematical Journal 67(2), 167–185 (2015). https://doi.org/10.1007/s11253-015-1072-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Blackmore, D., Prykarpatsky, A.K., Samoylenko, V.H.: Nonlinear Dynamical Systems of Mathematical Physics. World Scientific (2011). https://doi.org/10.1142/7960

  6. Blackmore, D., Prykarpatsky, Y.A., Bogolubov, N.N., Prykarpatski, A.K.: Integrability of and differential–algebraic structures for spatially 1d hydrodynamical systems of Riemann type. Chaos, Solitons & Fractals 59, 59–81 (2014). https://doi.org/10.1016/j.chaos.2013.11.012

    Article  MathSciNet  MATH  Google Scholar 

  7. Blackmore, D., Prytula, M.M., Prykarpatski, A.K.: Quasi-linearization and stability analysis of some self-dual, dark equations and a new dynamical system. Communications in Theoretical Physics 74(10), 105007 (2022). https://doi.org/10.1088/1572-9494/ac5d28

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogolyubov, N.N., Prikarpatskii, A.K.: Complete integrability of the nonlinear Ito and Benney-Kaup systems: Gradient algorithm and lax representation. Theoretical and Mathematical Physics 67(3), 586–596 (1986). https://doi.org/10.1007/BF01028694

    Article  MathSciNet  MATH  Google Scholar 

  9. Calogero, F., Degasperis, A.: Spectral transform and solitons. Vol. I, Lecture Notes in Computer Science, vol. 144. North-Holland Publishing Co., Amsterdam-New York (1982)

    Google Scholar 

  10. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class (2011). https://doi.org/10.48550/ARXIV.1106.1596

  11. Egorov, Y.V., Shubin, M.A.: Foundations of the classical theory of partial differential equations. Springer-Verlag, Berlin (1998). https://doi.org/10.1007/978-3-642-58093-2

  12. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian methods in the theory of solitons. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1987). https://doi.org/10.1007/978-3-540-69969-9

  13. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986). https://doi.org/10.1103/PhysRevLett.56.889

    Article  MATH  Google Scholar 

  14. Kuchment, P.: Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60. Birkhäuser Verlag, Basel (1993). https://doi.org/10.1007/978-3-0348-8573-7

    Book  MATH  Google Scholar 

  15. Kupershmidt, B.A.: Mathematics of dispersive water waves. Comm. Math. Phys. 99(1), 51–73 (1985). http://projecteuclid.org/euclid.cmp/1103942610

    Article  MathSciNet  MATH  Google Scholar 

  16. Kupershmidt, B.A.: Dark equations. J. Nonlinear Math. Phys. 8(3), 363–445 (2001). https://doi.org/10.2991/jnmp.2001.8.3.4

    Article  MathSciNet  MATH  Google Scholar 

  17. Newell, A.C.: Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1985). https://doi.org/10.1137/1.9781611970227

  18. Novikov, S., Manakov, S.V., Pitaevskiı̆, L.P., Zakharov, V.E.: Theory of solitons: The inverse scattering method. Contemporary Soviet Mathematics. Springer (1984)

    Google Scholar 

  19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962)

    MATH  Google Scholar 

  20. Prykarpatsky, A.K., Mykytiuk, I.V.: Algebraic integrability of nonlinear dynamical systems on manifolds, Mathematics and its Applications, vol. 443. Kluwer Academic Publishers Group, Dordrecht (1998). https://doi.org/10.1007/978-94-011-4994-5

    MATH  Google Scholar 

  21. Prykarpatsky, Y.A., Urbaniak, I., Kycia, R.A., Prykarpatski, A.K.: Dark type dynamical systems: The integrability algorithm and applications. Algorithms 15(8) (2022). https://doi.org/10.3390/a15080266

  22. Samoilenko, A.M., Prikarpatsky, Y.A.: Algebraic-analytical aspects of fully integrated dynamical systems and their perturbation, Proceedings of Institute of Mathematics of National Academy of Sciences of Ukraine. Mathematics and its Applications, vol. 41. National Academy of Sciences of Ukraine, Kiev (2002)

    Google Scholar 

  23. Shubin, M.: Invitation to partial differential equations, Graduate Studies in Mathematics, vol. 205. American Mathematical Society, Providence, RI (2020)

    Book  Google Scholar 

  24. Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/cbms/106

Download references

Acknowledgements

The sincere acknowledgement belongs in due course to the Department of Computer Science and Telecommunication of the Cracow University of Technology for a local research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolij K. Prykarpatski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prykarpatski, A.K., Pukach, P.Y., Kopych, M.I. (2023). The Parametrically Extended Kardar–Parisi–Zhang Equation, Its Dark-Type Generalization, and Integrability. In: Kielanowski, P., Dobrogowska, A., Goldin, G.A., Goliński, T. (eds) Geometric Methods in Physics XXXIX. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-30284-8_21

Download citation

Publish with us

Policies and ethics