Skip to main content

Quadratic Algebra and Spectrum of Superintegrable System

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXIX (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 191 Accesses

Abstract

Algebraic methods are powerful tools in classical and quantum mechanics. Superintegrable systems are an important class of classical and quantum systems that can be solved using algebraic approaches. In this chapter, we overview higher-rank quadratic algebra of the N-dimensional quantum Smorodinsky–Winternitz system, which is a maximally superintegrable and exactly solvable system. It is shown that the system is multiseparable and the wave function can be expressed in terms of Laguerre and Jacobi polynomials. We present a complete symmetry algebra SW(N) of the system, which is a higher-rank quadratic one containing Racah algebra R(N) as subalgebra. The distinct quadratic Q(3) algebras involving Racah algebra R(N) and their related cubic Casimir invariants are also studied. The energy spectrum of the N-dimensional Smorodinsky–Winternitz system is obtained algebraically via the different sets of subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargmann, V.: Zur theorie des wasserstoffatoms. Zeitschrift für Physik 99(7), 576–582 (1936). https://doi.org/10.1007/BF01338811

    Article  MATH  Google Scholar 

  2. Chen, Z., Marquette, I., Zhang, Y.Z.: Superintegrable systems from block separation of variables and unified derivation of their quadratic algebras. Ann. Physics 411, 167970, 14 (2019). https://doi.org/10.1016/j.aop.2019.167970

  3. Correa, F., Hoque, M.F., Marquette, I., Zhang, Y.Z.: N-dimensional Smorodinsky-Winternitz model and related higher rank quadratic algebra \(\mathcal {S}\mathcal {W}(N)\). J. Phys. A 54(39), Paper No. 395201, 19 (2021). https://doi.org/10.1088/1751-8121/ac1dc1

  4. Daskaloyannis, C.: Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems. J. Math. Phys. 42(3), 1100–1119 (2001). https://doi.org/10.1063/1.1348026

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, N.W.: Group theory of the Smorodinsky-Winternitz system. J. Math. Phys. 32(12), 3369–3375 (1991). https://doi.org/10.1063/1.529449

    Article  MathSciNet  MATH  Google Scholar 

  6. Fordy, A.P.: Quantum super-integrable systems as exactly solvable models. SIGMA Symmetry Integrability Geom. Methods Appl. 3, Paper 025, 10 pages (2007). https://doi.org/10.3842/SIGMA.2007.025

  7. Gaboriaud, J., Vinet, L., Vinet, S., Zhedanov, A.: The generalized Racah algebra as a commutant. Journal of Physics: Conference Series 1194, 012034 (2019). https://doi.org/10.1088/1742-6596/1194/1/012034

    MATH  Google Scholar 

  8. Genest, V.X., Vinet, L., Zhedanov, A.: A “Continuous” Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials. SIGMA Symmetry Integrability Geom. Methods Appl. 10, Paper 038, 18 pages (2014). https://doi.org/10.3842/SIGMA.2014.038

  9. Granovskiı̆, Y.I., Lutzenko, I.M., Zhedanov, A.S.: Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Physics 217(1), 1–20 (1992). https://doi.org/10.1016/0003-4916(92)90336-K

  10. Granovskiı̆, Y.I., Zhedanov, A.S., Lutzenko, I.M.: Quadratic algebra as a “hidden” symmetry of the Hartmann potential. J. Phys. A 24(16), 3887–3894 (1991). URL http://stacks.iop.org/0305-4470/24/3887

  11. Hoque, M.F., Marquette, I., Post, S., Zhang, Y.Z.: Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials. Ann. Physics 391, 203–215 (2018). https://doi.org/10.1016/j.aop.2018.02.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoque, M.F., Marquette, I., Zhang, Y.Z.: A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⊕ so(n) ⊕ so(N-n). J. Phys. A 48(44), 445207, 14 (2015). https://doi.org/10.1088/1751-8113/48/44/445207

  13. Hoque, M.F., Marquette, I., Zhang, Y.Z.: Quadratic algebra structure and spectrum of a new superintegrable system in N-dimension. J. Phys. A 48(18), 185201, 16 (2015). https://doi.org/10.1088/1751-8113/48/18/185201

  14. Hoque, M.F., Marquette, I., Zhang, Y.Z.: Quadratic algebra for superintegrable monopole system in a Taub-NUT space. J. Math. Phys. 57(9), 092104, 10 (2016). https://doi.org/10.1063/1.4962924

  15. Hoque, M.F., Marquette, I., Zhang, Y.Z.: Recurrence approach and higher rank cubic algebras for the N-dimensional superintegrable systems. J. Phys. A 49(12), 125201, 12 (2016). https://doi.org/10.1088/1751-8113/49/12/125201

  16. Hoque, M.F., Marquette, I., Zhang, Y.Z.: Quadratic algebra structure in the 5D Kepler system with non-central potentials and Yang-Coulomb monopole interaction. Ann. Physics 380, 121–134 (2017). https://doi.org/10.1016/j.aop.2017.03.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Hwa, R.C., Nuyts, J.: Group embedding for the harmonic oscillator. Phys. Rev. 145, 1188–1195 (1966). https://doi.org/10.1103/PhysRev.145.1188

    Article  MathSciNet  Google Scholar 

  18. Kalnins, E.G., Kress, J.M., Miller Jr., W.: Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems. J. Math. Phys. 47(9), 093501, 25 (2006). https://doi.org/10.1063/1.2337849

  19. Kalnis, E.G., Miller Jr., W., Post, S.: Models for quadratic algebras associated with second order superintegrable systems in 2d. SIGMA Symmetry Integrability Geom. Methods Appl. 4, Paper 008, 21 pages (2008). https://doi.org/10.3842/SIGMA.2008.008

  20. Kuru, c., Marquette, I., Negro, J.: The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres. J. Phys. A 53(40), 405203, 10 (2020). https://doi.org/10.1088/1751-8121/abadb7

  21. Liao, Y., Marquette, I., Zhang, Y.Z.: Quantum superintegrable system with a novel chain structure of quadratic algebras. J. Phys. A 51(25), 255201, 13 (2018). https://doi.org/10.1088/1751-8121/aac111

  22. Louck, J.D.: Group theory of harmonic oscillators in n-dimensional space. J. Mathematical Phys. 6, 1786–1804 (1965). https://doi.org/10.1063/1.1704724

    Article  MathSciNet  MATH  Google Scholar 

  23. Louck, J.D., Galbraith, H.W.: Application of Orthogonal and Unitary Group Methods to the n-Body Problem. Rev. Mod. Phys. 44, 540–601 (1972). https://doi.org/10.1103/RevModPhys.44.540

    Article  MathSciNet  Google Scholar 

  24. Makarov, A.A., Smorodinsky, J.A., Valiev, K., Winternitz, P.: A systematic search for nonrelativistic systems with dynamical symmetries. Il Nuovo Cimento A (1971–1996) 52(4), 1061–1084 (1967). https://doi.org/10.1007/BF02755212

  25. Marquette, I., Quesne, C.: Combined state-adding and state-deleting approaches to type III multi-step rationally extended potentials: applications to ladder operators and superintegrability. J. Math. Phys. 55(11), 112103, 25 (2014). https://doi.org/10.1063/1.4901006

  26. Miller Jr., W., Post, S., Winternitz, P.: Classical and quantum superintegrability with applications. J. Phys. A 46(42), 423001, 97 (2013). https://doi.org/10.1088/1751-8113/46/42/423001

  27. Tanoudis, Y., Daskaloyannis, C.: Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential. SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 054, 11 pages (2011). https://doi.org/10.3842/SIGMA.2011.054

  28. Tempesta, P., Turbiner, A.V., Winternitz, P.: Exact solvability of superintegrable systems. J. Math. Phys. 42(9), 4248–4257 (2001). https://doi.org/10.1063/1.1386927

    Article  MathSciNet  MATH  Google Scholar 

  29. Winternitz, P., Smorodinskiı̆, Y.A., Uhlíř, M., Friš, I.: Symmetry groups in classical and quantum mechanics. Soviet J. Nuclear Phys. 4, 444–450 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Fazlul Hoque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoque, M.F. (2023). Quadratic Algebra and Spectrum of Superintegrable System. In: Kielanowski, P., Dobrogowska, A., Goldin, G.A., Goliński, T. (eds) Geometric Methods in Physics XXXIX. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-30284-8_18

Download citation

Publish with us

Policies and ethics