Skip to main content

Artificial Intelligence Software Architecture in the Field of Cardiology and Application in the Cardio Vessel Project Using CJM and Customer Development Methods

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2022)

Abstract

The article is devoted to the task of automating tasks for the Cardio Vessel project, on the basis of which a platform is designed—an independent model of object-oriented software architecture within the framework of a model-oriented approach for the Cardio Vessel project in UML and the CJM and customer development projects is proposed. The article formalizes the problem of UML class diagrams, sequence diagrams, and precedents and offers mathematical models based on the Navier—Stokes method for defining the function of structural semantics of UML class diagrams and descriptions of semantically equivalent transformations. Algorithms for transforming Star UML class diagrams and calculating object-oriented metrics are also proposed. The paper presents a UML software tool that allows analysis using UML class diagrams. In conclusion, the CJM and customer development methodology for UML class diagrams using the Star UML software tool have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciavolino, E., Lagetto, G., Montinari, A., et al.: Customer satisfaction and service domains: a further development of PROSERV. Qual. Quant. 54, 1429–1444 (2019). https://doi.org/10.1007/s11135-019-00888-4

    Article  Google Scholar 

  2. Schau, H.J., Akaka, M.A.: From customer journeys to consumption journeys: a consumer culture approach to investigating value creation in practice-embedded consumption. AMS Rev. 11(1–2), 9–22 (2020). https://doi.org/10.1007/s13162-020-00177-6

    Article  Google Scholar 

  3. Pizzutti, C., Gonçalves, R., Ferreira, M.: Information search behavior at the post-purchase stage of the customer journey. J. Acad. Mark. Sci. 50, 981–1010 (2022). https://doi.org/10.1007/s11747-022-00864-9

    Article  Google Scholar 

  4. Schweidel, D.A., Bart, Y., Inman, J.J., et al.: How consumer digital signals are reshaping the customer journey. J. Acad. Mark. Sci. (2022). https://doi.org/10.1007/s11747-022-00839-w

  5. Homburg, C., Jozić, D., Kuehnl, C.: Customer experience management: toward implementing an evolving marketing concept. J. Acad. Mark. Sci. 45(3), 377–401 (2015). https://doi.org/10.1007/s11747-015-0460-7

    Article  Google Scholar 

  6. Murali, S., Balasubramanian, M., Choudary, M.V.: Investigation on the impact of the supplier, customer, and organization collaboration factors on the performance of new product development. Int. J. Syst. Assur. Eng. Manag. (2021). https://doi.org/10.1007/s13198-021-01064-4

  7. Morgan, T., Anokhin, S.A., Song, C., Chistyakova, N.: The role of customer participation in building new product development speed capabilities in turbulent environments. Int. Entrepreneurship Manag. J. 15(1), 119–133 (2018). https://doi.org/10.1007/s11365-018-0549-9

    Article  Google Scholar 

  8. Fang, X., Zhou, J., Zhao, H., Chen, Y.: A biclustering-based heterogeneous customer requirement determination method from customer participation in product development. Ann. Oper. Res. 309(2), 817–835 (2020). https://doi.org/10.1007/s10479-020-03607-7

    Article  Google Scholar 

  9. Stormi, K., Lindholm, A., Laine, T., Korhonen, T.: RFM customer analysis for product-oriented services and service business development: an interventionist case study of two machinery manufacturers. J. Manag. Gov. 24(3), 623–653 (2019). https://doi.org/10.1007/s10997-018-9447-3

    Article  Google Scholar 

  10. Viktorovich, S.S., Vladimirovna, S.N.: Study of the influence of the properties of the walls of blood vessels on the hemodynamics of the cardiovascular system. Bulletin PSU im. Sholom Aleichem, no. 2 (2011). https://cyberleninka.ru/article/n/issledovanie-vliyaniya-svoystv-stenok-sosudov-na-gemodinamiku-serdechnososudistoy-sistemy. Accessed 03 Nov 2020

  11. Shilko, S.V., Kuzminsky, Yu.G., Borisenko, M.V.: Mathematical model and software for monitoring of cardiovascular system. Пpoблeмы физики, мaтeмaтики и тexники 3(8) (2011)

    Google Scholar 

  12. Kiselev, I.N., et al.: Personalization of parameters and validation of the model of the human cardiovascular system. Math. Biol. Bioinform. 10(2), 526–547 (2015). https://doi.org/10.17537/2015.10.526

  13. Sindeev, S.V., Frolov, S.V.: Modeling of hemodynamics of the cardiovascular system in cerebral aneurysm. Matem. Model. 28(6), 98–114 (2016)

    MATH  Google Scholar 

  14. Simakov, S.S.: Modern methods of mathematical modeling of blood flow using averaged models. Comput. Res. Model. 10(5), 581–604 (2018)

    Google Scholar 

  15. Aptukov, A.V., Shevelev, N.A., Dombrovsky, I.V.: Mathematical modeling of the process of deformability of blood vessels with pathology in angioplasty. Russian J. Biomech. 2 (1999). https://cyberleninka.ru/article/n/matematicheskoe-modelirovanie-protsessa-deformiruemosti-krovenosnyh-sosudov-s-pathologiey-pri-angioplastike. Accessed 03 Nov 2020

  16. Vladimirovich, L.A., Aleksandrovich, B.I.: Dependence of the strength of welded blood vessels on the diameter, thickness and Young’s modulus of the wall. Biomed. Eng. Electron. 2(6) (2014). https://cyberleninka.ru/article/n/zavisimost-prochnosti-svarennyh-krovenosnyh-sosudov-ot-diametra-tolschiny-i-modulya-yunga-stenki. Accessed 11 Mar 2020

  17. Tygliyan, M.A., Tyurina, N.N.: A mathematical model for the passage of a hemodynamic impulse through bifurcation points. Keldysh Institute preprints, im. M. V. Keldysha 062, 18 (2017)

    Google Scholar 

  18. Chernyavsky, M.A., et al.: Computer simulation in the assessment of hemodynamic parameters after stent implantation in patients of the AORT. Mod. Probl. Sci. Educ. 5 (2018). http://www.science-education.ru/ru/article/view?id=28070. Accessed 03 Nov 2020

  19. Tregubov, V.P., Zhukov, N.K.: Computer simulation of blood flow in the presence of vascular pathologies. Russian J. Biomech. 2 (2017). https://cyberleninka.ru/article/n/kompyuternoe-modelirovanie-potoka-krovi-pri-nalichii-sosudistyh-patologiy. Accessed 03 Nov 2020

  20. Vladimirovich, F.S., Ogly, A.N.E., Andreevich, K.A., Vyacheslavovich, S.S.: Approaches to zero-dimensional modeling of the cardiovascular system and their use in assessing cerebral circulation. Izvestiya TulGU. Tech. Sci. 10 (2018). https://cyberleninka.ru/article/n/podhody-k-nulmernomu-modelirovaniyu-serdechno-sosudistoy-sistemy-i-ih-ispolzovanie-pri-otsenke-mozgovogo-krovoobrascheniya

  21. Vyacheslavovich, S.S., Vladimirovich, F.S., Yuryevich, P.A.: Physician’s decision-making support system in assessing the preoperative state of patients with acute cerebrovascular accident. Vestnik TSTU 4 (2017) https://cyberleninka.ru/article/n/sistema-podderzhki-prinyatiya-resheniy-vracha-pri-otsenke-predoperatsionnogo-sostoyaniya-bolnyh-s-ostrymi-narusheniyami-mozgovogo. Accessed 03 Nov 2020

  22. Sindeev, S.V., Frolov, S.V., Liepsch, D., Balasso, A.: Modeling of flow alterations induced by flow-diverter using multiscale model of hemodynamics. Becтник TГTУ №. 1 (2017). https://cyberleninka.ru/article/n/modeling-of-flow-alterations-induced-by-flow-diverter-using-multiscale-model-of-hemodynamics. дaтa oбpaщeния 03. Nov 2020

  23. Teregulov, Yu.E., Mayanskaya, S.D., Teregulova, E.T.: Changes in the elastic properties of arteries and hemodynamic processes. PM 2(103) (2017). https://cyberleninka.ru/article/n/izmeneniya-elasticheskih-svoystv-arteriy-i-gemodinamicheskie-protsessy

  24. Yakhontov, S.V., Kulemzin, A.V., Chufistova, O.N.: Mechanisms and factors of interaction between the links of the cardiovascular system during transient processes (analytical review, part 1). Vestnik TSPU 3 (2010). https://cyberleninka.ru/article/n/mehanizmy-i-faktory-vzaimodeystviya-zveniev-serdechno-sosudistoy-sistemypri-perehodnyh-protsessah-analiticheskiy-obzor-chast-1

  25. Torre, D., Genero, M., Labiche, Y., et al.: How consistency is handled in model-driven software engineering and UML: an expert opinion survey. Softw. Qual. J. (2022).https://doi.org/10.1007/s11219-022-09585-2

  26. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M.: An industrial case study on the use of UML in software maintenance and its perceived benefits and hurdles. Empir. Softw. Eng. 23(6), 3281–3345 (2018). https://doi.org/10.1007/s10664-018-9599-4

    Article  Google Scholar 

  27. Wei, R., Zolotas, A., Hoyos Rodriguez, H., Gerasimou, S., Kolovos, D.S., Paige, R.F.: Automatic generation of UML profile graphical editors for Papyrus. Softw. Syst. Model. 19(5), 1083–1106 (2020). https://doi.org/10.1007/s10270-020-00813-6

    Article  Google Scholar 

  28. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of UML models: a systematic review of research and practice. Softw. Syst. Model. 18(3), 2313–2360 (2018). https://doi.org/10.1007/s10270-018-0675-4

    Article  Google Scholar 

  29. Kraas, A.: On the automation-supported derivation of domain-specific UML profiles considering static semantics. Softw. Syst. Model. 21, 51–79 (2021). https://doi.org/10.1007/s10270-021-00890-1

    Article  Google Scholar 

  30. Amálio, N., Briand, L., Kelsen, P.: An experimental scrutiny of visual design modelling: VCL up against UML+OCL. Empir. Softw. Eng. 25(2), 1205–1258 (2019). https://doi.org/10.1007/s10664-019-09784-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qulmatova Sayyora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nurjabova, D., Sayyora, Q., Gulmira, P. (2023). Artificial Intelligence Software Architecture in the Field of Cardiology and Application in the Cardio Vessel Project Using CJM and Customer Development Methods. In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2022. Lecture Notes in Computer Science, vol 13772. Springer, Cham. https://doi.org/10.1007/978-3-031-30258-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30258-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30257-2

  • Online ISBN: 978-3-031-30258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics