Skip to main content

Genetic Programming and Coevolution to Play the Bomberman™ Video Game

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

The field of video games is of great interest to researchers in computational intelligence due to the complex, rich and dynamic nature they provide. We propose using Genetic Programming with coevolution and lexicographic fitness to generate an agent that plays the Bomberman™game. We investigate two sets of Genetic Programming building blocks: one contains conditions relative to movement, and the other does not. We aim to see whether the benefits of these movement-related conditions outweigh the negatives caused by increased search space size. We show that the benefits gained do not outweigh the increase in search space size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.gocoder.one/bomberland.

References

  1. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for complex tasks. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993, pp. 264–270. Morgan Kaufmann (1993)

    Google Scholar 

  2. Dawkins, R., Krebs, J.R.: Arms races between and within species. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 205(1161), 489–511 (1979)

    Google Scholar 

  3. Esparcia-Alcázar, A., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft. Comput. 17(8), 1479–1487 (2013). https://doi.org/10.1007/s00500-012-0965-7

    Article  Google Scholar 

  4. Fernández-Ares, A., et al.: It’s time to stop: a comparison of termination conditions in the evolution of game bots. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16549-3_29

    Chapter  Google Scholar 

  5. Forrest, S., Mitchell, M.: Relative building-block fitness and the building block hypothesis. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms. Vail, Colorado, USA, 26–29 July 1992, pp. 109–126. Morgan Kaufmann (1992). https://doi.org/10.1016/b978-0-08-094832-4.50013-1

  6. de Freitas, J.M., de Souza, F.R., Bernardino, H.S.: Evolving controllers for Mario AI using grammar-based genetic programming. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8. IEEE (2018). https://doi.org/10.1109/CEC.2018.8477698

  7. García-Sánchez, P., Fernández-Ares, A., Mora, A.M., Castillo, P.A., González, J., Guervós, J.J.M.: Tree depth influence in genetic programming for generation of competitive agents for RTS games. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 411–421. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_34

    Chapter  Google Scholar 

  8. García-Sánchez, P., Tonda, A.P., Leiva, A.J.F., Cotta, C.: Optimizing hearthstone agents using an evolutionary algorithm. Knowl. Based Syst. 188 (2020). https://doi.org/10.1016/j.knosys.2019.105032

  9. García-Sánchez, P., Tonda, A.P., Mora, A.M., Squillero, G., Guervós, J.J.M.: Towards automatic starcraft strategy generation using genetic programming. In: 2015 IEEE Conference on Computational Intelligence and Games, CIG 2015, Tainan, Taiwan, 31 August–2 September 2015, pp. 284–291. IEEE (2015). https://doi.org/10.1109/CIG.2015.7317940

  10. Gaudesi, M., Piccolo, E., Squillero, G., Tonda, A.P.: TURAN: evolving non-deterministic players for the iterated prisoner’s dilemma. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014, pp. 21–27. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900564

  11. Gold, R., Branquinho, H., García-Sánchez, P.: BomberLand-Evostar-2023 (2023). https://github.com/18goldr/BomberLand-Evostar-2023

  12. Gold, R., Grant, A.H., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: GUI-based, efficient genetic programming for unity3D. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO 2022, pp. 2310–2313. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3520304.3534022

  13. Gold, R., Grant, A.H., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: GUI-based, efficient genetic programming and AI planning For Unity3D. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds.) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-8460-0_3

  14. Gold, R., Haydn Grant, A., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: STGP-Sharp (2023). https://github.com/ALFA-group/STGP-Sharp

  15. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multim. Tools Appl. 80(5), 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  16. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  17. Smith, G., Avery, P., Houmanfar, R., Louis, S.J.: Using co-evolved RTS opponents to teach spatial tactics. In: Yannakakis, G.N., Togelius, J. (eds.) Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, CIG 2010, Copenhagen, Denmark, 18–21 August, 2010, pp. 146–153. IEEE (2010). https://doi.org/10.1109/ITW.2010.5593359

  18. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63519-4

    Book  Google Scholar 

Download references

Acknowledgements

This work is funded by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020. This work is also supported by the Ministerio español de Economía y Competitividad under project PID2020-115570GB-C22 (DemocratAI::UGR). The second author is funded by Foundation for Science and Technology (FCT), Portugal, under the grant 2022.11314.BD. This work started as a project at the first SPECIES Summer School 2022 (https://species-society.org/summer-school-2022/), for which we would also like to thank the organisers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo García-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gold, R., Branquinho, H., Hemberg, E., O’Reilly, UM., García-Sánchez, P. (2023). Genetic Programming and Coevolution to Play the Bomberman™ Video Game. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics