Abstract
The field of video games is of great interest to researchers in computational intelligence due to the complex, rich and dynamic nature they provide. We propose using Genetic Programming with coevolution and lexicographic fitness to generate an agent that plays the Bomberman™game. We investigate two sets of Genetic Programming building blocks: one contains conditions relative to movement, and the other does not. We aim to see whether the benefits of these movement-related conditions outweigh the negatives caused by increased search space size. We show that the benefits gained do not outweigh the increase in search space size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for complex tasks. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993, pp. 264–270. Morgan Kaufmann (1993)
Dawkins, R., Krebs, J.R.: Arms races between and within species. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 205(1161), 489–511 (1979)
Esparcia-Alcázar, A., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft. Comput. 17(8), 1479–1487 (2013). https://doi.org/10.1007/s00500-012-0965-7
Fernández-Ares, A., et al.: It’s time to stop: a comparison of termination conditions in the evolution of game bots. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16549-3_29
Forrest, S., Mitchell, M.: Relative building-block fitness and the building block hypothesis. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms. Vail, Colorado, USA, 26–29 July 1992, pp. 109–126. Morgan Kaufmann (1992). https://doi.org/10.1016/b978-0-08-094832-4.50013-1
de Freitas, J.M., de Souza, F.R., Bernardino, H.S.: Evolving controllers for Mario AI using grammar-based genetic programming. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8. IEEE (2018). https://doi.org/10.1109/CEC.2018.8477698
García-Sánchez, P., Fernández-Ares, A., Mora, A.M., Castillo, P.A., González, J., Guervós, J.J.M.: Tree depth influence in genetic programming for generation of competitive agents for RTS games. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 411–421. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_34
García-Sánchez, P., Tonda, A.P., Leiva, A.J.F., Cotta, C.: Optimizing hearthstone agents using an evolutionary algorithm. Knowl. Based Syst. 188 (2020). https://doi.org/10.1016/j.knosys.2019.105032
García-Sánchez, P., Tonda, A.P., Mora, A.M., Squillero, G., Guervós, J.J.M.: Towards automatic starcraft strategy generation using genetic programming. In: 2015 IEEE Conference on Computational Intelligence and Games, CIG 2015, Tainan, Taiwan, 31 August–2 September 2015, pp. 284–291. IEEE (2015). https://doi.org/10.1109/CIG.2015.7317940
Gaudesi, M., Piccolo, E., Squillero, G., Tonda, A.P.: TURAN: evolving non-deterministic players for the iterated prisoner’s dilemma. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014, pp. 21–27. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900564
Gold, R., Branquinho, H., García-Sánchez, P.: BomberLand-Evostar-2023 (2023). https://github.com/18goldr/BomberLand-Evostar-2023
Gold, R., Grant, A.H., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: GUI-based, efficient genetic programming for unity3D. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO 2022, pp. 2310–2313. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3520304.3534022
Gold, R., Grant, A.H., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: GUI-based, efficient genetic programming and AI planning For Unity3D. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds.) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-8460-0_3
Gold, R., Haydn Grant, A., Hemberg, E., Gunaratne, C., O’Reilly, U.M.: STGP-Sharp (2023). https://github.com/ALFA-group/STGP-Sharp
Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multim. Tools Appl. 80(5), 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269
Smith, G., Avery, P., Houmanfar, R., Louis, S.J.: Using co-evolved RTS opponents to teach spatial tactics. In: Yannakakis, G.N., Togelius, J. (eds.) Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, CIG 2010, Copenhagen, Denmark, 18–21 August, 2010, pp. 146–153. IEEE (2010). https://doi.org/10.1109/ITW.2010.5593359
Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63519-4
Acknowledgements
This work is funded by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020. This work is also supported by the Ministerio español de Economía y Competitividad under project PID2020-115570GB-C22 (DemocratAI::UGR). The second author is funded by Foundation for Science and Technology (FCT), Portugal, under the grant 2022.11314.BD. This work started as a project at the first SPECIES Summer School 2022 (https://species-society.org/summer-school-2022/), for which we would also like to thank the organisers.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gold, R., Branquinho, H., Hemberg, E., O’Reilly, UM., García-Sánchez, P. (2023). Genetic Programming and Coevolution to Play the Bomberman™ Video Game. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-30229-9_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30228-2
Online ISBN: 978-3-031-30229-9
eBook Packages: Computer ScienceComputer Science (R0)